Advertisement

Roughness in Timed Transition Systems Modeling Propagation of Plasmodium

  • Andrew Schumann
  • Krzysztof PancerzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9436)

Abstract

In the paper, we propose to use rough sets to describe some ambiguities in anticipation of states in propagation of plasmodium modeled by timed transition systems. A Physarum machine, that is a biological computing device implemented in the plasmodium of Physarum polycephalum, is considered as a modeled system. The plasmodial stage of Physarum polycephalum can be treated as a natural transition system. In the presented approach, both a standard definition of rough sets and the Variable Precision Rough Set Model (VPRSM) are used.

Keywords

Rough sets Variable precision rough set model Timed transition systems Physarum machines 

Notes

Acknowledgment

This research is being fulfilled by the support of FP7-ICT-2011-8.

References

  1. 1.
    Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific (2010)Google Scholar
  2. 2.
    Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum chip project: growing computers from slime mould. Int. J. Unconventional Comput. 8(4), 319–323 (2012)Google Scholar
  3. 3.
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3), 191–209 (1990)CrossRefGoogle Scholar
  4. 4.
    Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: de Bakker, J., Huizing, C., de Roever, W., Rozenberg, G. (eds.) Real-Time: Theory in Practice. LNCS, vol. 600, pp. 226–251. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  5. 5.
    Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407, 470–470 (2000)CrossRefGoogle Scholar
  6. 6.
    Nielsen, M., Rozenberg, G., Thiagarajan, P.: Elementary transition systems. Theor. Comput. Sci. 96(1), 3–33 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Pancerz, K., Schumann, A.: Principles of an object-oriented programming language for Physarum polycephalum computing. In: Proceedings of the 10th International Conference on Digital Technologies (DT’2014), pp. 273–280. Zilina, Slovak Republic (2014)Google Scholar
  8. 8.
    Pancerz, K., Schumann, A.: Rough set models of Physarum machines. Int. J. Gen. Syst. 44(3), 314–325 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pancerz, K., Schumann, A.: Some issues on an object-oriented programming language for Physarum machines. In: Bris, R., Majernik, J., Pancerz, K., Zaitseva, E. (eds.) Applications of Computational Intelligence in Biomedical Technology, Studies in Computational Intelligence, vol. 606, pp. 185–199. Springer International Publishing, Switzerland (2016)Google Scholar
  10. 10.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)CrossRefGoogle Scholar
  11. 11.
    Schumann, A., Pancerz, K.: Towards an object-oriented programming language for Physarum polycephalum computing. In: Szczuka, M., Czaja, L., Kacprzak, M. (eds.) Proceedings of the Workshop on Concurrency, Specification and Programming (CS&P’2013), pp. 389–397. Warsaw, Poland (2013)Google Scholar
  12. 12.
    Schumann, A., Pancerz, K.: Timed transition system models for programming Physarum machines: extended abstract. In: Popova-Zeugmann, L. (ed.) Proceedings of the Workshop on Concurrency, Specification and Programming (CS&P’2014), pp. 180–183, Chemnitz, Germany (2014)Google Scholar
  13. 13.
    Schumann, A., Pancerz, K.: Towards an object-oriented programming language for Physarum polycephalum computing: a petri net model approach. Fundam. Informaticae 133(2–3), 271–285 (2014)MathSciNetGoogle Scholar
  14. 14.
    Schumann, A., Pancerz, K., Jones, J.: Towards logic circuits based on Physarum polycephalum machines: the ladder diagram approach. In: Cliquet Jr., A., Plantier, G., Schultz, T., Fred, A., Gamboa, H. (eds.) Proceedings of the International Conference on Biomedical Electronics and Devices (BIODEVICES’2014), pp. 165–170. Angers, France (2014)Google Scholar
  15. 15.
    Yao, Y.: Probabilistic rough set approximations. Int. J. Approximate Reasoning 49(2), 255–271 (2008)CrossRefGoogle Scholar
  16. 16.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46(1), 39–59 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.University of Information Technology and ManagementRzeszówPoland
  2. 2.Chair of Computer Science, Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszówPoland

Personalised recommendations