# Statistical Interpretations of Three-Way Decisions

• Yiyu Yao
• Cong Gao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9436)

## Abstract

In an evaluation based model of three-way decisions, one constructs three regions, namely, the left, middle, and right regions based on an evaluation function and a pair of thresholds. This paper examines statistical interpretations for the construction of three regions. Such interpretations rely on an understanding that the middle region consists of normal or typical instances in a population, while two side regions consist of, abnormal or untypical instances. By using statistical information such as median, mean, percentile, and standard deviation, two interpretations are discussed. One is based on non-numeric values and the other is based on numeric values. For non-numeric values, median and percentile are used to construct three pair-wise disjoint regions. For numeric values, mean and standard deviation are used. The interpretations provide a solid statistical basis of three-way decisions for applications.

## Keywords

Statistical interpretations Three-way decisions

## Notes

### Acknowledgements

This work is partially supported by a Discovery Grant from NSERC, Canada and Sampson J. Goodfellow Scholarship.

## References

1. 1.
Azam, N., Yao, J.T.: Analyzing uncertainties of probabilistic rough set regions with game-theoretic rough sets. Int. J. Approximate Reasoning 55, 142–155 (2014)
2. 2.
Baram, Y.: Partial classification: the benefit of deferred decision. IEEE Trans. Pattern Anal. Mach. Intell. 20, 769–776 (1998)
3. 3.
Czitrom, V., Spagon, P.D.: Statistical Case Studies for Industrial Process Improvement. SIAM, Philadelphia (1997)
4. 4.
Deng, X.F.: Three-Way Classification Models. Ph.D. Dissertation, Department of Computer Science, University of Regina (2015)Google Scholar
5. 5.
Deng, X.F., Yao, Y.Y.: A multifaceted analysis of probabilistic three-way decisions. Fundam. Informaticae 132, 291–313 (2014)
6. 6.
Deng, X.F., Yao, Y.Y.: Decision-theoretic three-way approximations of fuzzy sets. Inf. Sci. 279, 702–715 (2014)
7. 7.
Goudey, R.: Do statistical inferences allowing three alternative decision give better feedback for environmentally precautionary decision-making? J. Environ. Manage. 85, 338–344 (2007)
8. 8.
Grzymala-Busse, J.W., Clarka, P.G., Kuehnhausena, M.: Generalized probabilistic approximations of incomplete data. Int. J. Approximate Reasoning 50, 180–196 (2014)
9. 9.
Hu, B.Q.: Three-way decisions space and three-way decisions. Inf. Sci. 281, 21–52 (2014)
10. 10.
Iserson, K.V., Moskop, J.C.: Triage in medicine, part I: concept, history, and types. Ann. Emerg. Med. 49, 275–281 (2007)
11. 11.
Jia, X.Y., Shang, L., Zhou, X.Z., Liang, J.Y., Miao, D.Q., Wang, G.Y., Li, T.R., Zhang, Y.P. (eds.): Theory of Three-way Decisions and Applications (in Chinese). Nanjing University Press, Nanjing (2012)Google Scholar
12. 12.
Jia, X.Y., Tang, Z.M., Liao, W.H., Shang, L.: On an optimization representation of decision-theoretic rough set model. Int. J. Approximate Reasoning 55, 156–166 (2014)
13. 13.
Li, H.X., Zhang, L.B., Huang, B., Zhou, X.Z.: Sequential three-way decision and granulation for cost-sensitive face recognition, Knowledge-Based Systems (2015). http://dx.doi.org/10.1016/j.knosys.2015.07.040
14. 14.
Li, H.X., Zhou, X.Z., Huang, B., Liu, D.: Cost-sensitive three-way decision: a sequential strategy. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 325–337. Springer, Heidelberg (2013)
15. 15.
Liang, D.C., Liu, D.: Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets. Inf. Sci. 300, 28–48 (2015)
16. 16.
Liang, D.C., Pedrycz, W., Liu, D., Hu, P.: Three-way decisions based on decision-theoretic rough sets under linguistic assessment with the aid of group decision making. Appl. Soft Comput. 29, 256–269 (2015)
17. 17.
Liu, D., Li, T.R., Liang, D.C.: Incorporating logistic regression to decision-theoretic rough sets for classifications. Int. J. Approximate Reasoning 55, 197–210 (2014)
18. 18.
Liu, D., Li, T.R., Liang, D.C.: Three-way government decision analysis with decision-theoretic rough sets. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 20, 119–132 (2012)
19. 19.
Liu, D., Li, T.R., Miao, D.Q., Wang, G.Y., Liang, J.Y. (eds.): Three-way Decisions and Granular Computing (in Chinese). Science Press, Beijing (2013) Google Scholar
20. 20.
Liu, D., Liang, D.C., Wang, C.C.: A novel three-way decision model based on incomplete information system. Knowledge-Based Systems (2015). http://dx.doi.org/10.1016/j.knosys.2015.07.036
21. 21.
Pater, C.: The blood pressure “uncertainty range” - a pragmatic approach to overcome current diagnostic uncertainties (II). Curr. Controlled Trials Cardiovasc. Med. 6, 5 (2005)
22. 22.
Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
23. 23.
Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley, Chichester (2008)
24. 24.
Peters, J.F., Ramanna, S.: Proximal three-way decisions: theory and applications in social networks. Knowledge-Based Systems (2015). http://dx.doi.org/10.1016/j.knosys.2015.07.021
25. 25.
Rousseeuw, P.J., Ruts, I., Tukey, J.W.: The bagplot: a bivariate boxplot. Am. Stat. 53, 382–387 (1999)Google Scholar
26. 26.
Sanders, D.H., Smidt, R.K., Adatia, A., Larson, G.A.: Statistics: A First Course. McGraw-Hill Ryerson, Toronto (2001) Google Scholar
27. 27.
Sang, Y.L., Liang, J.Y., Qian, Y.H.: Decision-theoretic rough sets under dynamic granulation. Knowledge-Based Systems (2015). http://dx.doi.org/10.1016/j.knosys.2015.08.001
28. 28.
Sattler, J.M.: Assessment of Children’s Intelligence. W.B. Saunders Company, Philadelphia (1975) Google Scholar
29. 29.
Schechter, C.B.: Sequential analysis in a Bayesian model of diastolic blood pressure measurement. Med. Decis. Making 8, 191–196 (1988)
30. 30.
Schofield, H.: Assess. Test. Introduction. Allen & Unwin, London (1972) Google Scholar
31. 31.
Shakiba, A., Hooshmandasl, M.R.: S-approximation spaces: a three-way decision approach. Fundam. Informaticae 39, 307–328 (2015)
32. 32.
Wald, A.: Sequential Anal. Wiley, New York (1947)
33. 33.
Yao, J.T., Azam, N.: Web-based medical decision support systems for three-way medical decision making with game-theoretic rough sets. IEEE Trans. Fuzzy Syst. 23, 3–15 (2014)
34. 34.
Yao, J.T., Herbert, J.P.: A game-theoretic perspective on rough set analysis. J. Chongqing Univ. Posts Telecommun. 20, 291–298 (2008)Google Scholar
35. 35.
Yao, Y.Y.: An outline of a theory of three-way decisions. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 1–17. Springer, Heidelberg (2012)
36. 36.
Yao, Y.Y.: Granular computing and sequential three-way decisions. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 16–27. Springer, Heidelberg (2013)
37. 37.
Yao, Y.Y.: Interval-set algebra for qualitative knowledge representation. In: Proceedings of the 5th International Conference on Computing and Information (ICCI), pp. 370–374 (1993)Google Scholar
38. 38.
Yao, Y.Y.: Perspectives of granular computing. In: Proceedings of 2005 IEEE International Conference on Granular Computing, vol. 1, pp. 85–90 (2005)Google Scholar
39. 39.
Yao, Y.Y.: Rough sets and three-way decisions. In: Ciucci, D., Wang, G.Y., Mitra, S., Wu, W.Z. (eds.) RSKT 2015. LNCS (LNAI), vol. 9436, pp. 62–73. Springer International Publishing, Switzerland (2015)
40. 40.
Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Proceedings of the 5th International Symposium on Methodologies for Intelligent Systems, pp. 17–25 (1990)Google Scholar
41. 41.
Yao, Y.Y., Yu, H.: An introduction of three-way decisions. In: Yu, H., Wang, G.Y., Li, T.R., Liang, J.Y., Miao, D.Q., Yao, Y.Y. (eds.) Three-Way Decisions: Methods and Practices for Complex Problem Solving, pp. 1–19. Science Press, Beijing (2015) (in Chinese)Google Scholar
42. 42.
Yu, H., Liu, Z.G., Wang, G.Y.: An automatic method to determine the number of clusters using decision-theoretic rough set. Int. J. Approximate Reasoning 55, 101–115 (2014)
43. 43.
Yu, H., Su, T., Zeng, X.H.: A three-way decisions clustering algorithm for incomplete data. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 765–776. Springer, Heidelberg (2014) Google Scholar
44. 44.
Yu, H., Wang, G.Y., Li, T.R., Liang, J.Y., Miao, D.Q., Yao, Y.Y. (eds.): Three-Way Decisions: Methods and Practices for Complex Problem Solving. Science Press, Beijing (2015) (in Chinese)Google Scholar
45. 45.
Yu, H., Zhang, C., Wang, G.Y.: A tree-based incremental overlapping clustering method using the three-way decision theory. Knowledge-Based Systems (2015). http://dx.doi.org/10.1016/j.knosys.2015.05.028
46. 46.
Zhang, H.R., Min, F.: Three-way recommender systems based on random forests. Knowledge-Based Systems (2015). http://dx.doi.org/10.1016/j.knosys.2015.06.019
47. 47.
Zhang, H.Y., Yang, S.Y., Ma, J.M.: Ranking interval sets based on inclusion measures and applications to three-way decisions. Knowledge-Based Systems (2015). http://dx.doi.org/10.1016/j.knosys.2015.07.025
48. 48.
Zhang, Y.: Optimizing Gini coefficient of probabilistic rough set regions using game-theoretic rough sets. In: 26th Canadian Conference of Electrical And Computer Engineering (CCECE), pp. 1–4 (2013)Google Scholar
49. 49.
Zhou, B.: Multi-class decision-theoretic rough sets. Int. J. Approximate Reasoning 55, 211–224 (2014)
50. 50.
Zhou, B., Yao, Y.Y., Luo, J.G.: Cost-sensitive three-way email spam filtering. J. Intell. Inf. Syst. 42, 19–45 (2014)

© Springer International Publishing Switzerland 2015