Advertisement

A Multi-view Decision Model Based on CCA

  • Jie Chen
  • Shu ZhaoEmail author
  • Yanping Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9436)

Abstract

Three-way decision theory divides all samples into three regions: positive region, negative region and boundary region. A lack of detailed information may make a definite decision impossible for samples in boundary region. These samples may be further handled by using new information. In this paper, we propose a method Multi-View Decision Model based on constructive three-way decision theory. Multi-view Decision Model mines the global information of all samples for decision. All samples firstly are decided by MinCA, which builds the min covers for each class. Then samples in boundary region are classified using Multi-view information. Experiments have shown that in most cases, Multi-View Decision Model is beneficial for reducing boundary region and promoting classification precision.

Keywords

Boundary region Multi-view information Three-way decision theory MinCA 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61175046, No. 61402006), supported by Provincial Natural Science Research Program of Higher Education Institutions of Anhui Province (No. KJ2013A016), and supported by Open Funding Project of Co-Innovation Center for Information Supply & Assurance Technology of Anhui University (No. ADXXBZ201410).

References

  1. 1.
    Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models. Inf. Sci. 181, 1080–1096 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 642–649. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  3. 3.
    Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180, 341–353 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yao, Y.Y.: Two semantic issues in a probabilistic rough set model. Fundamenta Informaticae 108, 249–265 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Zhou, Z.H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. Knowl. Data Eng. 17, 1529–1541 (2005)CrossRefGoogle Scholar
  6. 6.
    Li, P., Shang, L., Li, H.: A method to reduce boundary regions in three-way decision theory. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 834–843. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Yao, Y.: Granular computing and sequential three-way decisions. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 16–27. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Jia, X., Zheng, K., Li, W., Liu, T., Shang, L.: Three-way decisions solution to filter spam email: an empirical study. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 287–296. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Zhou, B., Yao, Y.Y., Yao, J.T.: Cost-sensitive three-way email spam filtering. J. Intell. Inf. Syst. 42, 1–27 (2014)CrossRefGoogle Scholar
  10. 10.
    Li, W., Miao, D.Q., Wang, W.L., Zhang, N.: Hierarchical rough decision theoretic framework for text classification. In: Sun, F., Wang, Y., Lu, J., Zhang, B., Kinsner, W., Zadeh, L.A. (eds.) ICCI 2010, pp. 484–489. IEEE Press, Los Alamitos (2010)CrossRefGoogle Scholar
  11. 11.
    Herbert, J.P., Yao, J.T.: Game-theoretic risk analysis in decision-theoretic rough sets. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 132–139. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  12. 12.
    Liu, D., Li, T., Liang, D.: Three-way decisions in dynamic decision-theoretic rough sets. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 291–301. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Li, H., Zhou, X., Zhao, J., Huang, B.: Cost-sensitive classification based on decision-theoretic rough set model. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 379–388. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Jia, X.Y., Shang, L., Chen, J.J.: Attribute reduction based on minimum decision cost. J. Front. Comput. Sci. Technol. 5, 155–160 (2011). (in Chinese)Google Scholar
  15. 15.
    Li, H., Zhou, X., Zhao, J., Liu, D.: Attribute reduction in decision-theoretic rough set model: a further investigation. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 466–475. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Liu, D., Li, H.X., Zhou, X.Z.: Two decades research on decision-theoretic rough sets. In: Sun, F., Wang, Y., Lu, J., Zhang, B., Kinsner, W., Zadeh, L.A. (eds.) ICCI 2010, pp. 968–973. IEEE Press, Los Alamitos (2010)Google Scholar
  17. 17.
    Li, H.X., Zhou, X.Z.: Risk decision making based on decision-theoretic rough set: a three-way view decision model. Int. J. Comput. Intell. Syst. 4, 1–11 (2011)CrossRefGoogle Scholar
  18. 18.
    Zhou, X., Li, H.: A multi-view decision model based on decision-theoretic rough set. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 650–657. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  19. 19.
    Yu, H., Chu, S., Yang, D.: Autonomous knowledge-oriented clustering using decision-theoretic rough set theory. Fundamenta Informaticae 115, 141–156 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Yao, J.T., Herbert, J.P.: Web-based support systems with rough set analysis. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 360–370. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  21. 21.
    Yu, H., Liu, Z., Wang, G.: Automatically determining the number of clusters using decision-theoretic rough set. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 504–513. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Xing, H., Zou, H., Zhao, S., Wang, X.: A three-way decisions model based on constructive covering algorithm. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 346–353. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  23. 23.
    UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/
  24. 24.
    Zhang, Y.P., Zou, H.J., Zhao, S.: Cost-sensitive three-way decisions model based on CCA. J. Nanjing Univ. 2, 447–452 (2015)zbMATHGoogle Scholar
  25. 25.
    Zhang, Y.P., Zou, H., Chen, X., Wang, X.Y., Tang, X.Q., Zhao, S.: Cost-sensitive three-way decisions model based on CCA. In: Miao, D.Q., et al. (eds.) RSKT 2014. LNCS(LNAI), vol. 8818, pp. 172–180. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Key Laboratory of Intelligent Computing and Signal Processing of Ministry of EducationHefeiPeople’s Republic of China
  2. 2.Center of Information Support and Assurance TechnologyAnhui UniversityHefeiPeople’s Republic of China
  3. 3.School of Computer Science and TechnologyAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations