Advertisement

Representing Data by Sparse Combination of Contextual Data Points for Classification

  • Jingyan Wang
  • Yihua Zhou
  • Ming Yin
  • Shaochang Chen
  • Benjamin Edwards
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9377)

Abstract

In this paper, we study the problem of using contextual data points of a data point for its classification problem. We propose to represent a data point as the sparse linear reconstruction of its context, and learn the sparse context to gather with a linear classifier in a supervised way to increase its discriminative ability. We proposed a novel formulation for context learning, by modeling the learning of context reconstruction coefficients and classifier in a unified objective. In this objective, the reconstruction error is minimized and the coefficient sparsity is encouraged. Moreover, the hinge loss of the classifier is minimized and the complexity of the classifier is reduced. This objective is optimized by an alternative strategy in an iterative algorithm. Experiments on three benchmark data set show its advantage over state-of-the-art context-based data representation and classification methods.

Keywords

Pattern classification Context learning Nearest neighbors Sparse regularization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deng, Q., Cai, A.: Svm-based loss differentiation mechanism in mobile ad hoc networks. In: 2009 Global Mobile Congress, GMC 2009 (2009), doi:10.1109/GMC.2009.5295834Google Scholar
  2. 2.
    Gao, S., Tsang, I.H., Chia, L.T.: Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 92–104 (2013)CrossRefGoogle Scholar
  3. 3.
    Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely–laplacian sparse coding for image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3555–3561. IEEE (2010)Google Scholar
  4. 4.
    Gao, Y., Zhang, F., Bakos, J.D.: Sparse matrix-vector multiply on the keystone ii digital signal processor. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2014)Google Scholar
  5. 5.
    Guo, Z., Li, Q., You, J., Zhang, D., Liu, W.: Local directional derivative pattern for rotation invariant texture classification. Neural Computing and Applications 21(8), 1893–1904 (2012)CrossRefGoogle Scholar
  6. 6.
    He, Y., Sang, N.: Multi-ring local binary patterns for rotation invariant texture classification. Neural Computing and Applications 22(3-4), 793–802 (2013)CrossRefGoogle Scholar
  7. 7.
    Hu, J., Zhang, F.: Improving protein localization prediction using amino acid group based physichemical encoding. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 248–258. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Huang, F., Li, C., Lin, L.: Identifying gender of microblog users based on message mining. In: Li, F., Li, G., Hwang, S.-w., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 488–493. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Li, T., Zhou, X., Brandstatter, K., Raicu, I.: Distributed key-value store on hpc and cloud systems. In: 2nd Greater Chicago Area System Research Workshop (GCASR). Citeseer (2013)Google Scholar
  10. 10.
    Li, T., Zhou, X., Brandstatter, K., Zhao, D., Wang, K., Rajendran, A., Zhang, Z., Raicu, I.: Zht: A light-weight reliable persistent dynamic scalable zero-hop distributed hash table. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Processing (IPDPS), pp. 775–787 (2013)Google Scholar
  11. 11.
    Melacci, S., Belkin, M.: Laplacian support vector machines trained in the primal. The Journal of Machine Learning Research 12, 1149–1184 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Peng, B., Liu, Y., Zhou, Y., Yang, L., Zhang, G., Liu, Y.: Modeling nanoparticle targeting to a vascular surface in shear flow through diffusive particle dynamics. Nanoscale Research Letters 10(1), 235 (2015)CrossRefGoogle Scholar
  13. 13.
    Tian, Y., Zhang, Q., Liu, D.: v-nonparallel support vector machine for pattern classification. Neural Computing and Applications 25(5), 1007–1020 (2014)CrossRefGoogle Scholar
  14. 14.
    Wang, J., Li, Y., Wang, Q., You, X., Man, J., Wang, C., Gao, X.: Proclusensem: predicting membrane protein types by fusing different modes of pseudo amino acid composition. Computers in Biology and Medicine 42(5), 564–574 (2012)CrossRefGoogle Scholar
  15. 15.
    Wang, J.J.Y., Bensmail, H., Gao, X.: Multiple graph regularized protein domain ranking. BMC Bioinformatics 13(1), 307 (2012)CrossRefGoogle Scholar
  16. 16.
    Wang, J.J.Y., Bensmail, H., Gao, X.: Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification. Pattern Recognition 46(12), 3249–3255 (2013)CrossRefGoogle Scholar
  17. 17.
    Wang, J.Y., Almasri, I., Gao, X.: Adaptive graph regularized nonnegative matrix factorization via feature selection. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 963–966 (2012)Google Scholar
  18. 18.
    Wang, K., Kulkarni, A., Zhou, X., Lang, M., Raicu, I.: Using simulation to explore distributed key-value stores for exascale system services. In: 2nd Greater Chicago Area System Research Workshop, GCASR (2013)Google Scholar
  19. 19.
    Wang, K., Liu, N., Sadooghi, I., Yang, X., Zhou, X., Lang, M., Sun, X.H., Raicu, I.: Overcoming hadoop scaling limitations through distributed task execution. In: Proc. of the IEEE International Conference on Cluster Computing, Cluster 2015 (2015)Google Scholar
  20. 20.
    Wang, K., Zhou, X., Chen, H., Lang, M., Raicu, I.: Next generation job management systems for extreme-scale ensemble computing. In: Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 111–114 (2014)Google Scholar
  21. 21.
    Wang, K., Zhou, X., Li, T., Zhao, D., Lang, M., Raicu, I.: Optimizing load balancing and data-locality with data-aware scheduling. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 119–128 (2014)Google Scholar
  22. 22.
    Wang, K., Zhou, X., Qiao, K., Lang, M., McClelland, B., Raicu, I.: Towards scalable distributed workload manager with monitoring-based weakly consistent resource stealing. In: Proceedings of the 24rd International Symposium on High-Performance Parallel and Distributed Computing, pp. 219–222. ACM (2015)Google Scholar
  23. 23.
    Wang, S., Zhou, Y., Tan, J., Xu, J., Yang, J., Liu, Y.: Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field. Computational Mechanics 53(3), 403–412 (2014)CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Han, H.C., Yang, J.Y., Lindsey, M.L., Jin, Y.: A conceptual cellular interaction model of left ventricular remodelling post-mi: dynamic network with exit-entry competition strategy. BMC Systems Biology 4(suppl. 1), S5 (2010)Google Scholar
  25. 25.
    Wang, Y., Yang, T., Ma, Y., Halade, G.V., Zhang, J., Lindsey, M.L., Jin, Y.F.: Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction. BMC Genomics 13(suppl. 6), S21 (2012)Google Scholar
  26. 26.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)CrossRefGoogle Scholar
  27. 27.
    Xu, L., Zhan, Z., Xu, S., Ye, K.: Cross-layer detection of malicious websites. In: Proceedings of the Third ACM Conference on Data and Application Security and Privacy, pp. 141–152. ACM (2013)Google Scholar
  28. 28.
    Xu, L., Zhan, Z., Xu, S., Ye, K.: An evasion and counter-evasion study in malicious websites detection. In: 2014 IEEE Conference on Communications and Network Security (CNS), pp. 265–273. IEEE (2014)Google Scholar
  29. 29.
    Xu, S., Lu, W., Xu, L., Zhan, Z.: Adaptive epidemic dynamics in networks: Thresholds and control. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 8(4), 19 (2014)Google Scholar
  30. 30.
    Xu, S., Lu, W., Zhan, Z.: A stochastic model of multivirus dynamics. IEEE Transactions on Dependable and Secure Computing 9(1), 30–45 (2012)CrossRefGoogle Scholar
  31. 31.
    Xu, S., Qian, H., Wang, F., Zhan, Z., Bertino, E., Sandhu, R.: Trustworthy information: concepts and mechanisms. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 398–404. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Xu, Y., Shen, F., Zhao, J.: An incremental learning vector quantization algorithm for pattern classification. Neural Computing and Applications 21(6), 1205–1215 (2012)CrossRefGoogle Scholar
  33. 33.
    Zhan, Z., Xu, M., Xu, S.: Characterizing honeypot-captured cyber attacks: Statistical framework and case study. IEEE Transactions on Information Forensics and Security 8(11), 1775–1789 (2013)CrossRefGoogle Scholar
  34. 34.
    Zhan, Z., Xu, M., Xu, S.: A characterization of cybersecurity posture from network telescope data. In: Proceedings of the 6th International Conference on Trustworthy Systems, Intrust, vol. 14 (2014)Google Scholar
  35. 35.
    Zhang, F., Gao, Y., Bakos, J.D.: Lucas-kanade optical flow estimation on the ti c66x digital signal processor. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6 (2014)Google Scholar
  36. 36.
    Zhang, F., Hu, J.: Bayesian classifier for anchored protein sorting discovery. In: IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2009, pp. 424–428 (2009)Google Scholar
  37. 37.
    Zhang, F., Hu, J.: Bioinformatics analysis of physicochemical properties of protein sorting signals (2010)Google Scholar
  38. 38.
    Zhang, F., Zhang, Y., Bakos, J.: Gpapriori: Gpu-accelerated frequent itemset mining. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER), pp. 590–594 (2011)Google Scholar
  39. 39.
    Zhang, F., Zhang, Y., Bakos, J.D.: Accelerating frequent itemset mining on graphics processing units. The Journal of Supercomputing 66(1), 94–117 (2013)CrossRefGoogle Scholar
  40. 40.
    Zhang, Y., Zhang, F., Bakos, J.: Frequent itemset mining on large-scale shared memory machines. In: 2011 IEEE International Conference on Cluster Computing (CLUSTER), pp. 585–589 (2011)Google Scholar
  41. 41.
    Zhang, Y., Zhang, F., Jin, Z., Bakos, J.D.: An fpga-based accelerator for frequent itemset mining. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 6(1), 2 (2013)Google Scholar
  42. 42.
    Zhao, D., Zhang, Z., Zhou, X., Li, T., Wang, K., Kimpe, D., Carns, P., Ross, R., Raicu, I.: Fusionfs: Toward supporting data-intensive scientific applications on extreme-scale high-performance computing systems. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 61–70 (2014)Google Scholar
  43. 43.
    Zhou, X., Chen, H., Wang, K., Lang, M., Raicu, I.: Exploring distributed resource allocation techniques in the slurm job management system. Illinois Institute of Technology, Department of Computer Science, Technical Report (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

<SimplePara><Emphasis Type="Bold">Open Access</Emphasis> This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. </SimplePara> <SimplePara>The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.</SimplePara>

Authors and Affiliations

  • Jingyan Wang
    • 1
    • 2
    • 3
  • Yihua Zhou
    • 4
  • Ming Yin
    • 5
  • Shaochang Chen
    • 5
  • Benjamin Edwards
    • 6
  1. 1.National Time Service CenterChinese Academy of SciencesXi’ anChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Provincial Key Laboratory for Computer Information Processing TechnologySoochow UniversitySuzhouChina
  4. 4.Department of Mechanical Engineering and MechanicsLehigh UniversityBethlehemUSA
  5. 5.Electronic Engineering CollegeNaval University of EngineeringWuhanChina
  6. 6.Department of Computer ScienceSam Houston State UniversityHuntsvilleUSA

Personalised recommendations