Advertisement

Exponential Synchronization of Complex Delayed Dynamical Networks with Uncertain Parameters via Intermittent Control

  • Haoran Zhao
  • Guoliang Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9377)

Abstract

In this paper, intermittent control scheme is adopted to investigate the exponential synchronization of complex delayed dynamical networks with uncertain parameters. Based on Lyapunov function method and mathematical analysis technique, some novel and useful criteria for exponential synchronization are established. Finally, two numerical simulations are given to illustrate the effectiveness and correctness of the derived theoretical results.

Keywords

exponential synchronization intermittent control time-varying delay uncertain parameters complex dynamical networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hong, S., Yang, H.Q., Zio, E., Huang, N.: A novel dynamics model of fault propagation and equilibrium analysis in complex dynamical communication networks. Appl. Math. Comput. 247, 1021–1029 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cai, G.L., Jiang, S.Q., Cai, S.M., Tian, L.X.: Cluster synchronization of uncertain complex networks with desynchronizing impulse. Chin. Phys. B 23, 120505 (2014)CrossRefGoogle Scholar
  3. 3.
    Zheng, S., Bi, Q.S., Cai, G.L.: Adaptive projective synchronization in complex networks with time-varying coupling delay. Phys. Lett. A 373, 1553–1559 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yang, X.S., Cao, J.D.: Hybrid adaptive and impulsive synchronization of uncertain complex networks with delays and general uncertain perturbations. Appl. Math. Comput. 227, 480–493 (2014)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Wang, X., Fang, J.A., Dai, A.D., Cui, W.X., He, G.: Mean square exponential synchronization for a class of Markovian switching complex networks under feedback control and M-matrix approach. Neurocomputing 144, 357–366 (2014)CrossRefGoogle Scholar
  6. 6.
    Li, S.K., Zhang, J.X., Tang, W.S.: Robust H∞ output feedback control for uncertain complex delayed dynamical networks. Comput. Math. Appl. 62, 497–505 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhang, G.D., Shen, Y.: Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control. Neural Netw. 55, 1–10 (2014)CrossRefGoogle Scholar
  8. 8.
    Yang, X.S., Cao, J.D.: Stochastic synchronization of coupled neural networks with intermittent control. Phys. Lett. A 373, 3259–3272 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wu, Z.Y., Liu, D.F., Ye, Q.L.: Pinning impulsive synchronization of complex variable dynamical networks. Commun. Nonlinear Sci. Numer. Simulat. 20, 273–280 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, C.J., Yu, W.W., Huang, T.W.: Impulsive synchronization schemes of stochastic complex networks with switching topology: Average time approach. Neural Netw. 54, 85–94 (2014)CrossRefGoogle Scholar
  11. 11.
    Cai, S.M., Hao, J.J., He, Q.B., Liu, Z.R.: Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control. Phys. Lett. A 375, 1965–1971 (2011)CrossRefGoogle Scholar
  12. 12.
    Cai, S.M., Zhou, P.P., Liu, Z.R.: Pinning synchronization of hybrid-coupled directed delayed dynamical network via intermittent control. Chaos 24, 33102 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

<SimplePara><Emphasis Type="Bold">Open Access</Emphasis> This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. </SimplePara> <SimplePara>The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.</SimplePara>

Authors and Affiliations

  • Haoran Zhao
    • 1
  • Guoliang Cai
    • 1
  1. 1.Nonlinear Scientific Research CenterJiangsu UniversityZhenjiangPR China

Personalised recommendations