Advertisement

Epigenetic Significance of Chromatin Organization During Cellular Aging and Organismal Lifespan

  • Milena Georgieva
  • Dessislava Staneva
  • George Miloshev
Chapter

Abstract

Aging is a developmental process that occurs through epigenetic reprogramming that involves nine hallmark characteristics, most notably genomic instability. During physiological development, chromatin is modified, reorganized, and de-compacted in order for DNA to be transcribed, replicated, and repaired. The most prominent histone modifications include acetylation, methylation, ubiquitylation, ADP-ribosylation, phosphorylation, and sumoylation. Younger cells/tissues are characterized by greater global methylation. Global DNA demethylation in aging occurs mainly at repetitive DNA elements and in genome regions with facultative heterochromatin, which leads to overall deheterochromatinization of the genome.

Keywords

Premature Aging Chromatin Organization Chromosome Territory Nuclear Lamina Chromatin Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are thankful to Djulia Milcheva and Mathew Serkedjiev for the fruitful discussions and comments on the section regarding age-associated diseases. The authors highly acknowledge Toni Efremov for all technical assistance during the preparation of the current book chapter.

References

  1. Abdullah, R., Basak, I., Patil, K. S., Alves, G., Larsen, J. P., & Moller, S. G. (2014). Parkinson’s disease and age: The obvious but largely unexplored link. Experimental Gerontology. doi: 10.1016/j.exger.2014.09.014.PubMedGoogle Scholar
  2. Ackermann, H. W., Tremblay, M., & Berthiaume, L. (2000). Viral pathogenesis in diagrams. Boca Raton, FL: CRC Press.Google Scholar
  3. Adams, P. D. (2007). Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene, 397(1–2), 84–93. doi: 10.1016/j.gene.2007.04.020.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ahuja, N., Li, Q., Mohan, A. L., Baylin, S. B., & Issa, J. P. (1998). Aging and DNA methylation in colorectal mucosa and cancer. Cancer Research, 58(23), 5489–5494.PubMedGoogle Scholar
  5. Andersson, K., Mahr, R., Bjorkroth, B., & Daneholt, B. (1982). Rapid reformation of the thick chromosome fiber upon completion of RNA synthesis at the Balbiani ring genes in Chironomus tentans. Chromosoma, 87(1), 33–48.PubMedCrossRefGoogle Scholar
  6. Apostolou, E., & Hochedlinger, K. (2013). Chromatin dynamics during cellular reprogramming. Nature, 502(7472), 462–471. doi: 10.1038/nature12749.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Ashraf, N., Zino, S., Macintyre, A., Kingsmore, D., Payne, A. P., George, W. D., et al. (2006). Altered sirtuin expression is associated with node-positive breast cancer. British Journal of Cancer, 95(8), 1056–1061. doi: 10.1038/sj.bjc.6603384.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381–395. doi: 10.1038/cr.2011.22.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Barlesi, F., Giaccone, G., Gallegos-Ruiz, M. I., Loundou, A., Span, S. W., Lefesvre, P., et al. (2007). Global histone modifications predict prognosis of resected non small-cell lung cancer. Journal of Clinical Oncology, 25(28), 4358–4364. doi: 10.1200/JCO.2007.11.2599.PubMedCrossRefGoogle Scholar
  10. Behbahani, T. E., Kahl, P., von der Gathen, J., Heukamp, L. C., Baumann, C., Gutgemann, I., et al. (2012). Alterations of global histone H4K20 methylation during prostate carcinogenesis. BMC Urology, 12, 5. doi: 10.1186/1471-2490-12-5.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bender, S., Tang, Y., Lindroth, A. M., Hovestadt, V., Jones, D. T., Kool, M., et al. (2013). Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell, 24(5), 660–672. doi: 10.1016/j.ccr.2013.10.006.PubMedCrossRefGoogle Scholar
  12. Benetti, R., Garcia-Cao, M., & Blasco, M. A. (2007a). Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nature Genetics, 39(2), 243–250. doi: 10.1038/ng1952.PubMedCrossRefGoogle Scholar
  13. Benetti, R., Gonzalo, S., Jaco, I., Schotta, G., Klatt, P., Jenuwein, T., et al. (2007b). Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. The Journal of Cell Biology, 178(6), 925–936. doi: 10.1083/jcb.200703081.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Bettens, K., Sleegers, K., & Van Broeckhoven, C. (2013). Genetic insights in Alzheimer’s disease. The Lancet Neurology, 12(1), 92–104. doi: 10.1016/S1474-4422(12)70259-4.PubMedCrossRefGoogle Scholar
  15. Bianco-Miotto, T., Chiam, K., Buchanan, G., Jindal, S., Day, T. K., Thomas, M., et al. (2010). Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiology, Biomarkers & Prevention, 19(10), 2611–2622. doi: 10.1158/1055-9965.EPI-10-0555.CrossRefGoogle Scholar
  16. Blandini, F., Fancellu, R., Martignoni, E., Mangiagalli, A., Pacchetti, C., Samuele, A., et al. (2001). Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clinical Chemistry, 47(6), 1102–1104.PubMedGoogle Scholar
  17. Blasco, M. A. (2007). The epigenetic regulation of mammalian telomeres. Nature Reviews Genetics, 8(4), 299–309. doi: 10.1038/nrg2047.PubMedCrossRefGoogle Scholar
  18. Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: Multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1-3), 52–57. doi: 10.1016/j.bbaexp.2003.10.010.PubMedCrossRefGoogle Scholar
  19. Burton, A., & Torres-Padilla, M. E. (2014). Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nature Reviews Molecular Cell Biology, 15(11), 723–734. doi: 10.1038/nrm3885.PubMedCrossRefGoogle Scholar
  20. Campion, D., Dumanchin, C., Hannequin, D., Dubois, B., Belliard, S., Puel, M., et al. (1999). Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. American Journal of Human Genetics, 65(3), 664–670. doi: 10.1086/302553.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Campisi, J. (2000). Cancer, aging and cellular senescence. In Vivo, 14(1), 183–188.PubMedGoogle Scholar
  22. Cao, K., Blair, C. D., Faddah, D. A., Kieckhaefer, J. E., Olive, M., Erdos, M. R., et al. (2011). Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts. The Journal of Clinical Investigation, 121(7), 2833–2844. doi: 10.1172/JCI43578.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Casillas, M. A., Jr., Lopatina, N., Andrews, L. G., & Tollefsbol, T. O. (2003). Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Molecular and Cellular Biochemistry, 252(1–2), 33–43.PubMedCrossRefGoogle Scholar
  24. Catez, F., Ueda, T., & Bustin, M. (2006). Determinants of histone H1 mobility and chromatin binding in living cells. Nature Structural & Molecular Biology, 13(4), 305–310. doi: 10.1038/nsmb1077.CrossRefGoogle Scholar
  25. Chandra, T., Ewels, P. A., Schoenfelder, S., Furlan-Magaril, M., Wingett, S. W., Kirschner, K., et al. (2015). Global reorganization of the nuclear landscape in senescent cells. Cell Reports, 10(4), 471–484. doi: 10.1016/j.celrep.2014.12.055.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Chen, X., Sun, K., Jiao, S., Cai, N., Zhao, X., Zou, H., et al. (2014a). High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Scientific Reports, 4, 7481. doi: 10.1038/srep07481.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Chen, Z. H., Zhu, M., Yang, J., Liang, H., He, J., He, S., et al. (2014b). PTEN interacts with histone H1 and controls chromatin condensation. Cell Reports, 8(6), 2003–2014. doi: 10.1016/j.celrep.2014.08.008.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Cheung, I., Shulha, H. P., Jiang, Y., Matevossian, A., Wang, J., Weng, Z., et al. (2010). Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8824–8829. doi: 10.1073/pnas.1001702107.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Cho, K. S., Elizondo, L. I., & Boerkoel, C. F. (2004). Advances in chromatin remodeling and human disease. Current Opinion in Genetics & Development, 14(3), 308–315. doi: 10.1016/j.gde.2004.04.015.CrossRefGoogle Scholar
  30. Chuang, C. H., Carpenter, A. E., Fuchsova, B., Johnson, T., de Lanerolle, P., & Belmont, A. S. (2006). Long-range directional movement of an interphase chromosome site. Current Biology, 16(8), 825–831. doi: 10.1016/j.cub.2006.03.059.PubMedCrossRefGoogle Scholar
  31. Clapier, C. R., & Cairns, B. R. (2009). The biology of chromatin remodeling complexes. Annual Review of Biochemistry, 78, 273–304. doi: 10.1146/annurev.biochem.77.062706.153223.PubMedCrossRefGoogle Scholar
  32. Clausell, J., Happel, N., Hale, T. K., Doenecke, D., & Beato, M. (2009). Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS One, 4(10), e0007243. doi: 10.1371/journal.pone.0007243.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Columbaro, M., Capanni, C., Mattioli, E., Novelli, G., Parnaik, V. K., Squarzoni, S., et al. (2005). Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment. Cellular and Molecular Life Sciences, 62(22), 2669–2678. doi: 10.1007/s00018-005-5318-6.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Cook, P. R., & Brazell, I. A. (1975). Supercoils in human DNA. Journal of Cell Science, 19(2), 261–279.PubMedGoogle Scholar
  35. Corona, D. F., Siriaco, G., Armstrong, J. A., Snarskaya, N., McClymont, S. A., Scott, M. P., et al. (2007). ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo. PLoS Biology, 5(9), e232. doi: 10.1371/journal.pbio.0050232.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Corpet, A., & Stucki, M. (2014). Chromatin maintenance and dynamics in senescence: A spotlight on SAHF formation and the epigenome of senescent cells. Chromosoma, 123(5), 423–436. doi: 10.1007/s00412-014-0469-6.PubMedCrossRefGoogle Scholar
  37. Cremer, T., & Cremer, C. (2006). Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: Experiments and models from the 1990s to the present. European Journal of Histochemistry, 50(4), 223–272.PubMedGoogle Scholar
  38. Cuthbert, G. L., Daujat, S., Snowden, A. W., Erdjument-Bromage, H., Hagiwara, T., Yamada, M., et al. (2004). Histone deimination antagonizes arginine methylation. Cell, 118(5), 545–553. doi: 10.1016/j.cell.2004.08.020.PubMedCrossRefGoogle Scholar
  39. Dalvai, M., & Bystricky, K. (2010). The role of histone modifications and variants in regulating gene expression in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(1), 19–33. doi: 10.1007/s10911-010-9167-z.PubMedCrossRefGoogle Scholar
  40. Dang, W., Steffen, K. K., Perry, R., Dorsey, J. A., Johnson, F. B., Shilatifard, A., et al. (2009). Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature, 459(7248), 802–807. doi: 10.1038/nature08085.PubMedCentralPubMedCrossRefGoogle Scholar
  41. De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., et al. (2003). Lamin a truncation in Hutchinson-Gilford progeria. Science, 300(5628), 2055. doi: 10.1126/science.1084125.PubMedCrossRefGoogle Scholar
  42. Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D. K., Solimando, L., et al. (2008). Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes & Development, 22(7), 832–853. doi: 10.1101/gad.1652708.CrossRefGoogle Scholar
  43. Decker, M. L., Chavez, E., Vulto, I., & Lansdorp, P. M. (2009). Telomere length in Hutchinson-Gilford progeria syndrome. Mechanisms of Ageing and Development, 130(6), 377–383. doi: 10.1016/j.mad.2009.03.001.PubMedCrossRefGoogle Scholar
  44. Dekker, J. (2008). Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. The Journal of Biological Chemistry, 283(50), 34532–34540. doi: 10.1074/jbc.M806479200.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Capturing chromosome conformation. Science, 295(5558), 1306–1311. doi: 10.1126/science.1067799.PubMedCrossRefGoogle Scholar
  46. Deligezer, U., Akisik, E. Z., Akisik, E. E., Kovancilar, M., Bugra, D., Erten, N., Holdenrieder, S., & Dalay, N. (2011). H3K9me3/H4K20me3 ratio in circulating nucleosomes as potential biomarker for colorectal cancer. In P. B. Gahan (Ed.), Circulating nucleic acids in plasma and serum (pp. 97–103). Dordrecht: Springer.Google Scholar
  47. Dhanasekaran, K., Arif, M., & Kundu, T. K. (2012). Cancer: An epigenetic landscape. In T. K. Kundu (Ed.), Epigenetics: Development and disease (Subcellular Biochemistry, Vol. 61). Netherlands: Springer.Google Scholar
  48. Dhanasekaran, K., Kumari, S., & Kanduri, C. (2013). Noncoding RNAs in chromatin organization and transcription regulation: An epigenetic view. Sub-Cellular Biochemistry, 61, 343–372. doi: 10.1007/978-94-007-4525-4_15.PubMedCrossRefGoogle Scholar
  49. Dorigo, B., Schalch, T., Bystricky, K., & Richmond, T. J. (2003). Chromatin fiber folding: Requirement for the histone H4 N-terminal tail. Journal of Molecular Biology, 327(1), 85–96.PubMedCrossRefGoogle Scholar
  50. Downs, J. A., & Cote, J. (2005). Dynamics of chromatin during the repair of DNA double-strand breaks. Cell Cycle, 4(10), 1373–1376. doi: 10.4161/cc.4.10.2108.PubMedCrossRefGoogle Scholar
  51. Downs, J. A., Kosmidou, E., Morgan, A., & Jackson, S. P. (2003). Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Molecular Cell, 11(6), 1685–1692.PubMedCrossRefGoogle Scholar
  52. Duce, J. A., Smith, D. P., Blake, R. E., Crouch, P. J., Li, Q. X., Masters, C. L., et al. (2006). Linker histone H1 binds to disease associated amyloid-like fibrils. Journal of Molecular Biology, 361(3), 493–505. doi: 10.1016/j.jmb.2006.06.038.PubMedCrossRefGoogle Scholar
  53. Earnshaw, W. C., & Laemmli, U. K. (1983). Architecture of metaphase chromosomes and chromosome scaffolds. The Journal of Cell Biology, 96(1), 84–93.PubMedCrossRefGoogle Scholar
  54. Ehrlich, M. (2009). DNA hypomethylation in cancer cells. Epigenomics, 1(2), 239–259. doi: 10.2217/epi.09.33.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Ellinger, J., Kahl, P., Mertens, C., Rogenhofer, S., Hauser, S., Hartmann, W., et al. (2010a). Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. International Journal of Cancer, 127(10), 2360–2366. doi: 10.1002/ijc.25250.CrossRefGoogle Scholar
  56. Ellinger, J., Kahl, P., von der Gathen, J., Heukamp, L. C., Gutgemann, I., Walter, B., et al. (2012). Global histone H3K27 methylation levels are different in localized and metastatic prostate cancer. Cancer Investigation, 30(2), 92–97. doi: 10.3109/07357907.2011.636117.PubMedCrossRefGoogle Scholar
  57. Ellinger, J., Kahl, P., von der Gathen, J., Rogenhofer, S., Heukamp, L. C., Gutgemann, I., et al. (2010b). Global levels of histone modifications predict prostate cancer recurrence. The Prostate, 70(1), 61–69. doi: 10.1002/pros.21038.PubMedCrossRefGoogle Scholar
  58. Elsheikh, S. E., Green, A. R., Rakha, E. A., Powe, D. G., Ahmed, R. A., Collins, H. M., et al. (2009). Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Research, 69(9), 3802–3809. doi: 10.1158/0008-5472.CAN-08-3907.PubMedCrossRefGoogle Scholar
  59. Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., et al. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937), 293–298. doi: 10.1038/nature01629.PubMedCrossRefGoogle Scholar
  60. Ertekin-Taner, N. (2007). Genetics of Alzheimer’s disease: A centennial review. Neurologic Clinics, 25(3), 611–667. doi: 10.1016/j.ncl.2007.03.009. v.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Fan, Y., Nikitina, T., Zhao, J., Fleury, T. J., Bhattacharyya, R., Bouhassira, E. E., et al. (2005). Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell, 123(7), 1199–1212. doi: 10.1016/j.cell.2005.10.028.PubMedCrossRefGoogle Scholar
  62. Feser, J., & Tyler, J. (2011). Chromatin structure as a mediator of aging. FEBS Letters, 585(13), 2041–2048. doi: 10.1016/j.febslet.2010.11.016.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Filion, G. J., van Bemmel, J. G., Braunschweig, U., Talhout, W., Kind, J., Ward, L. D., et al. (2010). Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell, 143(2), 212–224. doi: 10.1016/j.cell.2010.09.009.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Finch, J. T., & Klug, A. (1976). Solenoidal model for superstructure in chromatin. Proceedings of the National Academy of Sciences of the United States of America, 73(6), 1897–1901.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Fraga, M. F., Agrelo, R., & Esteller, M. (2007). Cross-talk between aging and cancer: The epigenetic language. Annals of the New York Academy of Sciences, 1100, 60–74. doi: 10.1196/annals.1395.005.PubMedCrossRefGoogle Scholar
  66. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005a). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10604–10609. doi: 10.1073/pnas.0500398102.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., et al. (2005b). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 37(4), 391–400. doi: 10.1038/ng1531.PubMedCrossRefGoogle Scholar
  68. Fraser, P. (2006). Transcriptional control thrown for a loop. Current Opinion in Genetics & Development, 16(5), 490–495. doi: 10.1016/j.gde.2006.08.002.CrossRefGoogle Scholar
  69. Fuke, C., Shimabukuro, M., Petronis, A., Sugimoto, J., Oda, T., Miura, K., et al. (2004). Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: An HPLC-based study. Annals of Human Genetics, 68(Pt 3), 196–204. doi: 10.1046/j.1529-8817.2004.00081.x.PubMedCrossRefGoogle Scholar
  70. Fullgrabe, J., Kavanagh, E., & Joseph, B. (2011). Histone onco-modifications. Oncogene, 30(31), 3391–3403. doi: 10.1038/onc.2011.121.PubMedCrossRefGoogle Scholar
  71. Funayama, R., Saito, M., Tanobe, H., & Ishikawa, F. (2006). Loss of linker histone H1 in cellular senescence. The Journal of Cell Biology, 175(6), 869–880. doi: 10.1083/jcb.200604005.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Fussner, E., Strauss, M., Djuric, U., Li, R., Ahmed, K., Hart, M., et al. (2012). Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Reports, 13(11), 992–996. doi: 10.1038/embor.2012.139.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Gabrovsky, N., Georgieva, M., Laleva, M., Uzunov, K., & Miloshev, G. (2013). Histone H1.0–a potential molecular marker with prognostic value for patients with malignant gliomas. Acta Neurochirurgica, 155(8), 1437–1442. doi: 10.1007/s00701-013-1802-1.PubMedCrossRefGoogle Scholar
  74. Garinis, G. A., van der Horst, G. T., Vijg, J., & Hoeijmakers, J. H. (2008). DNA damage and ageing: New-age ideas for an age-old problem. Nature Cell Biology, 10(11), 1241–1247. doi: 10.1038/ncb1108-1241.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Gasser, S. M. (2002). Visualizing chromatin dynamics in interphase nuclei. Science, 296(5572), 1412–1416. doi: 10.1126/science.1067703.PubMedCrossRefGoogle Scholar
  76. Gelato, K. A., & Fischle, W. (2008). Role of histone modifications in defining chromatin structure and function. Biological Chemistry, 389(4), 353–363. doi: 10.1515/BC.2008.048.PubMedCrossRefGoogle Scholar
  77. Georgieva, M., Harata, M., & Miloshev, G. (2008). The nuclear actin-related protein Act3p/Arp4 influences yeast cell shape and bulk chromatin organization. Journal of Cellular Biochemistry, 104(1), 59–67. doi: 10.1002/jcb.21600.PubMedCrossRefGoogle Scholar
  78. Georgieva, M., Roguev, A., Balashev, K., Zlatanova, J., & Miloshev, G. (2012). Hho1p, the linker histone of Saccharomyces cerevisiae, is important for the proper chromatin organization in vivo. Biochimica et Biophysica Acta, 1819(5), 366–374. doi: 10.1016/j.bbagrm.2011.12.003.PubMedCrossRefGoogle Scholar
  79. Georgieva, M., Staneva, D., Uzunova, K., Efremov, T., Balashev, K., Harata, M., et al. (2015). The linker histone in Saccharomyces cerevisiae interacts with actin-related protein 4 and both regulate chromatin structure and cellular morphology. The International Journal of Biochemistry & Cell Biology, 59, 182–192. doi: 10.1016/j.biocel.2014.12.006.CrossRefGoogle Scholar
  80. Ghirlando R, Felsenfeld G (2013) Chromatin structure outside and inside the nucleus. Biopolymers 99: 225–232.Google Scholar
  81. Gilbert, N., Boyle, S., Fiegler, H., Woodfine, K., Carter, N. P., & Bickmore, W. A. (2004). Chromatin architecture of the human genome: Gene-rich domains are enriched in open chromatin fibers. Cell, 118(5), 555–566. doi: 10.1016/j.cell.2004.08.011.PubMedCrossRefGoogle Scholar
  82. Giles, W. H., Kittner, S. J., Anda, R. F., Croft, J. B., & Casper, M. L. (1995). Serum folate and risk for ischemic stroke. First National Health and Nutrition Examination Survey epidemiologic follow-up study. Stroke, 26(7), 1166–1170.PubMedCrossRefGoogle Scholar
  83. Goldman, R. D., Gruenbaum, Y., Moir, R. D., Shumaker, D. K., & Spann, T. P. (2002). Nuclear lamins: Building blocks of nuclear architecture. Genes & Development, 16(5), 533–547. doi: 10.1101/gad.960502.CrossRefGoogle Scholar
  84. Goldman, R. D., Shumaker, D. K., Erdos, M. R., Eriksson, M., Goldman, A. E., Gordon, L. B., et al. (2004). Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 8963–8968. doi: 10.1073/pnas.0402943101.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Goldstein, D. R. (2010). Aging, imbalanced inflammation and viral infection. Virulence, 1(4), 295–298. doi: 10.4161/viru.1.4.12009.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Gordon, L. B., Rothman, F. G., Lopez-Otin, C., & Misteli, T. (2014). Progeria: A paradigm for translational medicine. Cell, 156(3), 400–407. doi: 10.1016/j.cell.2013.12.028.PubMedCrossRefGoogle Scholar
  87. Gotta, M., Strahl-Bolsinger, S., Renauld, H., Laroche, T., Kennedy, B. K., Grunstein, M., et al. (1997). Localization of Sir2p: The nucleolus as a compartment for silent information regulators. The EMBO Journal, 16(11), 3243–3255. doi: 10.1093/emboj/16.11.3243.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Gravina, S., & Vijg, J. (2010). Epigenetic factors in aging and longevity. Pflügers Archiv - European Journal of Physiology, 459(2), 247–258. doi: 10.1007/s00424-009-0730-7.PubMedCrossRefGoogle Scholar
  89. Grigoryev, S. A., Arya, G., Correll, S., Woodcock, C. L., & Schlick, T. (2009). Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13317–13322. doi: 10.1073/pnas.0903280106.PubMedCentralPubMedCrossRefGoogle Scholar
  90. Guarente, L. (2013). Introduction: Sirtuins in aging and diseases. Methods in Molecular Biology, 1077, 3–10. doi: 10.1007/978-1-62703-637-5_1.PubMedCrossRefGoogle Scholar
  91. Guerrero, N., Mendes de Leon, C. F., Evans, D. A., & Jacobs, E. A. (2015). Determinants of trust in health care in an older population. Journal of the American Geriatrics Society. doi: 10.1111/jgs.13316.PubMedGoogle Scholar
  92. Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., et al. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49(2), 359–367. doi: 10.1016/j.molcel.2012.10.016.PubMedCentralPubMedCrossRefGoogle Scholar
  93. Happel, N., & Doenecke, D. (2009). Histone H1 and its isoforms: Contribution to chromatin structure and function. Gene, 431(1-2), 1–12. doi: 10.1016/j.gene.2008.11.003.PubMedCrossRefGoogle Scholar
  94. Hardy, J., Lewis, P., Revesz, T., Lees, A., & Paisan-Ruiz, C. (2009). The genetics of Parkinson’s syndromes: A critical review. Current Opinion in Genetics & Development, 19(3), 254–265. doi: 10.1016/j.gde.2009.03.008.CrossRefGoogle Scholar
  95. Haruki, H., Okuwaki, M., Miyagishi, M., Taira, K., & Nagata, K. (2006). Involvement of template-activating factor I/SET in transcription of adenovirus early genes as a positive-acting factor. Journal of Virology, 80(2), 794–801. doi: 10.1128/JVI.80.2.794-801.2006.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Hayes, J. J., Tullius, T. D., & Wolffe, A. P. (1990). The structure of DNA in a nucleosome. Proceedings of the National Academy of Sciences of the United States of America, 87(19), 7405–7409.PubMedCentralPubMedCrossRefGoogle Scholar
  97. He, C., Xu, J., Zhang, J., Xie, D., Ye, H., Xiao, Z., et al. (2012). High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma. Human Pathology, 43(9), 1425–1435. doi: 10.1016/j.humpath.2011.11.003.PubMedCrossRefGoogle Scholar
  98. Hegele, R. (2005). LMNA mutation position predicts organ system involvement in laminopathies. Clinical Genetics, 68(1), 31–34. doi: 10.1111/j.1399-0004.2005.00447.x.PubMedCrossRefGoogle Scholar
  99. Helbling Chadwick, L., Chadwick, B. P., Jaye, D. L., & Wade, P. A. (2009). The Mi-2/NuRD complex associates with pericentromeric heterochromatin during S phase in rapidly proliferating lymphoid cells. Chromosoma, 118(4), 445–457. doi: 10.1007/s00412-009-0207-7.PubMedCrossRefGoogle Scholar
  100. Henderson, K. A., & Hughes, A. L. (2014). Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. Elife, 3, e03504. doi: 10.7554/eLife.03504.PubMedCrossRefGoogle Scholar
  101. Hennekam, R. C. (2006). Hutchinson-Gilford progeria syndrome: Review of the phenotype. American Journal of Medical Genetics Part A, 140(23), 2603–2624. doi: 10.1002/ajmg.a.31346.PubMedCrossRefGoogle Scholar
  102. Hermann, A., Gowher, H., & Jeltsch, A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cellular and Molecular Life Sciences, 61(19–20), 2571–2587. doi: 10.1007/s00018-004-4201-1.PubMedCrossRefGoogle Scholar
  103. Herranz, D., & Serrano, M. (2010). SIRT1: Recent lessons from mouse models. Nature Reviews Cancer, 10(12), 819–823. doi: 10.1038/nrc2962.PubMedCentralPubMedCrossRefGoogle Scholar
  104. Herskind, A. M., McGue, M., Holm, N. V., Sorensen, T. I., Harvald, B., & Vaupel, J. W. (1996). The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870-1900. Human Genetics, 97(3), 319–323.PubMedCrossRefGoogle Scholar
  105. Herskovits, A. Z., & Guarente, L. (2014). SIRT1 in neurodevelopment and brain senescence. Neuron, 81(3), 471–483. doi: 10.1016/j.neuron.2014.01.028.PubMedCentralPubMedCrossRefGoogle Scholar
  106. Heyn, H., Moran, S., & Esteller, M. (2013). Aberrant DNA methylation profiles in the premature aging disorders Hutchinson-Gilford Progeria and Werner syndrome. Epigenetics, 8(1), 28–33. doi: 10.4161/epi.23366.PubMedCentralPubMedCrossRefGoogle Scholar
  107. Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. doi: 10.1186/gb-2013-14-10-r115.PubMedCentralPubMedCrossRefGoogle Scholar
  108. Horvath, S., Garagnani, P., Bacalini, M. G., Pirazzini, C., Salvioli, S., Gentilini, D., et al. (2015). Accelerated epigenetic aging in Down syndrome. Aging Cell. doi: 10.1111/acel.12325.Google Scholar
  109. Huang, S., Risques, R. A., Martin, G. M., Rabinovitch, P. S., & Oshima, J. (2008). Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Experimental Cell Research, 314(1), 82–91. doi: 10.1016/j.yexcr.2007.08.004.PubMedCentralPubMedCrossRefGoogle Scholar
  110. Huang, J. C., Yan, L. Y., Lei, Z. L., Miao, Y. L., Shi, L. H., Yang, J. W., et al. (2007). Changes in histone acetylation during postovulatory aging of mouse oocyte. Biology of Reproduction, 77(4), 666–670. doi: 10.1095/biolreprod.107.062703.PubMedCrossRefGoogle Scholar
  111. Huynh, V. A., Robinson, P. J., & Rhodes, D. (2005). A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone. Journal of Molecular Biology, 345(5), 957–968. doi: 10.1016/j.jmb.2004.10.075.PubMedCrossRefGoogle Scholar
  112. Inoue, T., Hiratsuka, M., Osaki, M., & Oshimura, M. (2007). The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle, 6(9), 1011–1018.PubMedCrossRefGoogle Scholar
  113. Ishimi, Y., Kojima, M., Takeuchi, F., Miyamoto, T., Yamada, M., & Hanaoka, F. (1987). Changes in chromatin structure during aging of human skin fibroblasts. Experimental Cell Research, 169(2), 458–467.PubMedCrossRefGoogle Scholar
  114. Issa, J. P., Ahuja, N., Toyota, M., Bronner, M. P., & Brentnall, T. A. (2001). Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Research, 61(9), 3573–3577.PubMedGoogle Scholar
  115. Issa, J. P., Ottaviano, Y. L., Celano, P., Hamilton, S. R., Davidson, N. E., & Baylin, S. B. (1994). Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genetics, 7(4), 536–540. doi: 10.1038/ng0894-536.PubMedCrossRefGoogle Scholar
  116. Ito, T. (2007). Role of histone modification in chromatin dynamics. Journal of Biochemistry, 141(5), 609–614. doi: 10.1093/jb/mvm091.PubMedCrossRefGoogle Scholar
  117. Iyer, L. M., Abhiman, S., & Aravind, L. (2011). Natural history of eukaryotic DNA methylation systems. Progress in Molecular Biology and Translational Science, 101, 25–104. doi: 10.1016/b978-0-12-387685-0.00002-0.PubMedCrossRefGoogle Scholar
  118. Kadauke, S., & Blobel, G. A. (2009). Chromatin loops in gene regulation. Biochimica et Biophysica Acta, 1789(1), 17–25. doi: 10.1016/j.bbagrm.2008.07.002.PubMedCentralPubMedCrossRefGoogle Scholar
  119. Kaeberlein, M., Burtner, C. R., & Kennedy, B. K. (2007). Recent developments in yeast aging. PLoS Genetics, 3(5), e84. doi: 10.1371/journal.pgen.0030084.PubMedCentralPubMedCrossRefGoogle Scholar
  120. Karymov, M. A., Tomschik, M., Leuba, S. H., Caiafa, P., & Zlatanova, J. (2001). DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: Requirement for linker histone. FASEB Journal, 15(14), 2631–2641. doi: 10.1096/fj.01-0345com.PubMedCrossRefGoogle Scholar
  121. Kawakami, K., Nakamura, A., Ishigami, A., Goto, S., & Takahashi, R. (2009). Age-related difference of site-specific histone modifications in rat liver. Biogerontology, 10(4), 415–421. doi: 10.1007/s10522-008-9176-0.PubMedCrossRefGoogle Scholar
  122. Kennedy, B. K., Gotta, M., Sinclair, D. A., Mills, K., McNabb, D. S., Murthy, M., et al. (1997). Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell, 89(3), 381–391.PubMedCrossRefGoogle Scholar
  123. Khare, S. P., Sharma, A., Deodhar, K. K., & Gupta, S. (2011). Overexpression of histone variant H2A.1 and cellular transformation are related in N-nitrosodiethylamine-induced sequential hepatocarcinogenesis. Experimental Biology and Medicine, 236(1), 30–35. doi: 10.1258/ebm.2010.010140.PubMedCrossRefGoogle Scholar
  124. Kim, J. Y., Tavare, S., & Shibata, D. (2005). Counting human somatic cell replications: Methylation mirrors endometrial stem cell divisions. Proceedings of the National Academy of Sciences of the United States of America, 102(49), 17739–17744. doi: 10.1073/pnas.0503976102.PubMedCentralPubMedCrossRefGoogle Scholar
  125. Klein, C., & Schlossmacher, M. G. (2007). Parkinson disease, 10 years after its genetic revolution: Multiple clues to a complex disorder. Neurology, 69(22), 2093–2104. doi: 10.1212/01.wnl.0000271880.27321.a7.PubMedCrossRefGoogle Scholar
  126. Kohlmaier, A., Savarese, F., Lachner, M., Martens, J., Jenuwein, T., & Wutz, A. (2004). A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biology, 2(7), E171. doi: 10.1371/journal.pbio.0020171.PubMedCentralPubMedCrossRefGoogle Scholar
  127. Kudlow, B. A., Kennedy, B. K., & Monnat, R. J., Jr. (2007). Werner and Hutchinson-Gilford progeria syndromes: Mechanistic basis of human progeroid diseases. Nature Reviews Molecular Cell Biology, 8(5), 394–404. doi: 10.1038/nrm2161.PubMedCrossRefGoogle Scholar
  128. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., & Reinberg, D. (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes & Development, 16(22), 2893–2905. doi: 10.1101/gad.1035902.CrossRefGoogle Scholar
  129. Kuzumaki, N., Ikegami, D., Tamura, R., Sasaki, T., Niikura, K., Narita, M., et al. (2010). Hippocampal epigenetic modification at the doublecortin gene is involved in the impairment of neurogenesis with aging. Synapse, 64(8), 611–616. doi: 10.1002/syn.20768.PubMedCrossRefGoogle Scholar
  130. Lambert, J. C., & Amouyel, P. (2007). Genetic heterogeneity of Alzheimer’s disease: Complexity and advances. Psychoneuroendocrinology, 32(Suppl 1), S62–70. doi: 10.1016/j.psyneuen.2007.05.015.PubMedCrossRefGoogle Scholar
  131. Langmore, J. P., & Schutt, C. (1980). The higher order structure of chicken erythrocyte chromosomes in vivo. Nature, 288(5791), 620–622.PubMedCrossRefGoogle Scholar
  132. Lazarus, A., Banerjee, K. K., & Kolthur-Seetharam, U. (2013). Small changes, big effects: Chromatin goes aging. Sub-Cellular Biochemistry, 61, 151–176. doi: 10.1007/978-94-007-4525-4_8.PubMedCrossRefGoogle Scholar
  133. Leszinski, G., Gezer, U., Siegele, B., Stoetzer, O., & Holdenrieder, S. (2012). Relevance of histone marks H3K9me3 and H4K20me3 in cancer. Anticancer Research, 32(5), 2199–2205.PubMedGoogle Scholar
  134. Li, L. C. (2014). Chromatin remodeling by the small RNA machinery in mammalian cells. Epigenetics, 9(1), 45–52. doi: 10.4161/epi.26830.PubMedCentralPubMedCrossRefGoogle Scholar
  135. Lieberman, P. M. (2006). Chromatin regulation of virus infection. Trends in Microbiology, 14(3), 132–140. doi: 10.1016/j.tim.2006.01.001.PubMedCrossRefGoogle Scholar
  136. Lieberman, P. M. (2008). Chromatin organization and virus gene expression. Journal of Cellular Physiology, 216(2), 295–302. doi: 10.1002/jcp.21421.PubMedCentralPubMedCrossRefGoogle Scholar
  137. Lindstrom, D. L., & Gottschling, D. E. (2009). The mother enrichment program: A genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics, 183(2), 413–422. doi: 10.1534/genetics.109.106229.PubMedCentralPubMedCrossRefGoogle Scholar
  138. Lindstrom, D. L., Leverich, C. K., Henderson, K. A., & Gottschling, D. E. (2011). Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLoS Genetics, 7(3), e1002015. doi: 10.1371/journal.pgen.1002015.PubMedCentralPubMedCrossRefGoogle Scholar
  139. Littau, V. C., Burdick, C. J., Allfrey, V. G., & Mirsky, S. A. (1965). The role of histones in the maintenance of chromatin structure. Proceedings of the National Academy of Sciences of the United States of America, 54(4), 1204–1212.PubMedCentralPubMedCrossRefGoogle Scholar
  140. Liu, B., Wang, J., Chan, K. M., Tjia, W. M., Deng, W., Guan, X., et al. (2005). Genomic instability in laminopathy-based premature aging. Nature Medicine, 11(7), 780–785. doi: 10.1038/nm1266.PubMedCrossRefGoogle Scholar
  141. Liu, Y., Xie, Q. R., Wang, B., Shao, J., Zhang, T., Liu, T., et al. (2013). Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics. Protein & Cell. doi: 10.1007/s13238-013-3054-5.Google Scholar
  142. Llano, M., Saenz, D. T., Meehan, A., Wongthida, P., Peretz, M., Walker, W. H., et al. (2006). An essential role for LEDGF/p75 in HIV integration. Science, 314(5798), 461–464. doi: 10.1126/science.1132319.PubMedCrossRefGoogle Scholar
  143. Longo, V. D., & Fabrizio, P. (2012). Chronological aging in Saccharomyces cerevisiae. Sub-Cellular Biochemistry, 57, 101–121. doi: 10.1007/978-94-007-2561-4_5.PubMedCentralPubMedCrossRefGoogle Scholar
  144. Longo, V. D., & Kennedy, B. K. (2006). Sirtuins in aging and age-related disease. Cell, 126(2), 257–268. doi: 10.1016/j.cell.2006.07.002.PubMedCrossRefGoogle Scholar
  145. Lopatina, N., Haskell, J. F., Andrews, L. G., Poole, J. C., Saldanha, S., & Tollefsbol, T. (2002). Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. Journal of Cellular Biochemistry, 84(2), 324–334.PubMedCrossRefGoogle Scholar
  146. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. doi: 10.1016/j.cell.2013.05.039.PubMedCentralPubMedCrossRefGoogle Scholar
  147. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389(6648), 251–260. doi: 10.1038/38444.PubMedCrossRefGoogle Scholar
  148. Ma, Y., Jacobs, S. B., Jackson-Grusby, L., Mastrangelo, M. A., Torres-Betancourt, J. A., Jaenisch, R., et al. (2005). DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A. Journal of Cell Science, 118(Pt 8), 1607–1616. doi: 10.1242/jcs.02291.PubMedCrossRefGoogle Scholar
  149. Maeshima, K., Imai, R., Tamura, S., & Nozaki, T. (2014). Chromatin as dynamic 10-nm fibers. Chromosoma, 123(3), 225–237. doi: 10.1007/s00412-014-0460-2.PubMedCentralPubMedCrossRefGoogle Scholar
  150. Manuyakorn, A., Paulus, R., Farrell, J., Dawson, N. A., Tze, S., Cheung-Lau, G., et al. (2010). Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: Results from RTOG 9704. Journal of Clinical Oncology, 28(8), 1358–1365. doi: 10.1200/JCO.2009.24.5639.PubMedCentralPubMedCrossRefGoogle Scholar
  151. Margueron, R., Justin, N., Ohno, K., Sharpe, M. L., Son, J., Drury, W. J., 3rd, et al. (2009). Role of the polycomb protein EED in the propagation of repressive histone marks. Nature, 461(7265), 762–767. doi: 10.1038/nature08398.PubMedCentralPubMedCrossRefGoogle Scholar
  152. Marioni, R. E., Shah, S., McRae, A. F., Chen, B. H., Colicino, E., Harris, S. E., et al. (2015). DNA methylation age of blood predicts all-cause mortality in later life. Genome Biology, 16(1), 25. doi: 10.1186/s13059-015-0584-6.PubMedCentralPubMedCrossRefGoogle Scholar
  153. Marsden, M. P., & Laemmli, U. K. (1979). Metaphase chromosome structure: Evidence for a radial loop model. Cell, 17(4), 849–858. doi: 10.1016/0092-8674(79)90325-8.PubMedCrossRefGoogle Scholar
  154. Martin, G. M. (2005). Epigenetic drift in aging identical twins. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10413–10414. doi: 10.1073/pnas.0504743102.PubMedCentralPubMedCrossRefGoogle Scholar
  155. Mastroeni, D., Grover, A., Delvaux, E., Whiteside, C., Coleman, P. D., & Rogers, J. (2011). Epigenetic mechanisms in Alzheimer’s disease. Neurobiology of Aging, 32(7), 1161–1180. doi: 10.1016/j.neurobiolaging.2010.08.017.PubMedCentralPubMedCrossRefGoogle Scholar
  156. McCord, R. P., Nazario-Toole, A., Zhang, H., Chines, P. S., Zhan, Y., Erdos, M. R., et al. (2013). Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Research, 23(2), 260–269. doi: 10.1101/gr.138032.112.PubMedCentralPubMedCrossRefGoogle Scholar
  157. McGarvey, K. M., Van Neste, L., Cope, L., Ohm, J. E., Herman, J. G., Van Criekinge, W., et al. (2008). Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Research, 68(14), 5753–5759. doi: 10.1158/0008-5472.can-08-0700.PubMedCentralPubMedCrossRefGoogle Scholar
  158. McKenzie, S. J., McLaughlin, D., Clark, J., & Doi, S. A. (2015). The burden of non-adherence to cardiovascular medications among the aging population in Australia: A meta-analysis. Drugs & Aging. doi: 10.1007/s40266-015-0245-1.Google Scholar
  159. Medrzycki, M., Zhang, Y., McDonald, J. F., & Fan, Y. (2012). Profiling of linker histone variants in ovarian cancer. Frontiers in Bioscience, 17, 396–406.CrossRefGoogle Scholar
  160. Merideth, M. A., Gordon, L. B., Clauss, S., Sachdev, V., Smith, A. C., Perry, M. B., et al. (2008). Phenotype and course of Hutchinson-Gilford progeria syndrome. The New England Journal of Medicine, 358(6), 592–604. doi: 10.1056/NEJMoa0706898.PubMedCentralPubMedCrossRefGoogle Scholar
  161. Miquel, P. A. (2014). Aging as alteration. Interdisciplinary Topics in Gerontology, 39, 187–197. doi: 10.1159/000358906.PubMedCrossRefGoogle Scholar
  162. Misteli, T. (2010). Higher-order genome organization in human disease. Cold Spring Harbor Perspectives in Biology, 2(8), a000794. doi: 10.1101/cshperspect.a000794.PubMedCentralPubMedCrossRefGoogle Scholar
  163. Mitteldorf, J. (2015). How does the body know how old it is? Introducing the epigenetic clock hypothesis. Interdisciplinary Topics in Gerontology, 40, 49–62. doi: 10.1159/000364929.PubMedCrossRefGoogle Scholar
  164. Morris, M., Iansek, R., Matyas, T., & Summers, J. (1998). Abnormalities in the stride length-cadence relation in Parkinsonian gait. Movement Disorders, 13(1), 61–69. doi: 10.1002/mds.870130115.PubMedCrossRefGoogle Scholar
  165. Muller-Tidow, C., Klein, H. U., Hascher, A., Isken, F., Tickenbrock, L., Thoennissen, N., et al. (2010). Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood, 116(18), 3564–3571. doi: 10.1182/blood-2009-09-240978.PubMedCentralPubMedCrossRefGoogle Scholar
  166. Muñoz-Najar, U., & Sedivy, J. M. (2011). Epigenetic control of aging. Antioxidants and Redox Signaling, 14(2), 241–259. doi: 10.1089/ars.2010.3250.PubMedCentralPubMedCrossRefGoogle Scholar
  167. Nagarajan, R. P., Zhang, B., Bell, R. J., Johnson, B. E., Olshen, A. B., Sundaram, V., et al. (2014). Recurrent epimutations activate gene body promoters in primary glioblastoma. Genome Research, 24(5), 761–774. doi: 10.1101/gr.164707.113.PubMedCentralPubMedCrossRefGoogle Scholar
  168. Narita, M., Nunez, S., Heard, E., Narita, M., Lin, A. W., Hearn, S. A., et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113(6), 703–716.PubMedCrossRefGoogle Scholar
  169. Novikov, L., Park, J. W., Chen, H., Klerman, H., Jalloh, A. S., & Gamble, M. J. (2011). QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Molecular and Cellular Biology, 31(20), 4244–4255. doi: 10.1128/MCB.05244-11.PubMedCentralPubMedCrossRefGoogle Scholar
  170. O’Sullivan, R. J., & Karlseder, J. (2012). The great unravelling: Chromatin as a modulator of the aging process. Trends in Biochemical Sciences, 37(11), 466–476. doi: 10.1016/j.tibs.2012.08.001.PubMedCentralPubMedCrossRefGoogle Scholar
  171. O’Sullivan, R. J., Kubicek, S., Schreiber, S. L., & Karlseder, J. (2010). Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nature Structural & Molecular Biology, 17(10), 1218–1225. doi: 10.1038/nsmb.1897.CrossRefGoogle Scholar
  172. Oakes, C. C., Smiraglia, D. J., Plass, C., Trasler, J. M., & Robaire, B. (2003). Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1775–1780. doi: 10.1073/pnas.0437971100.PubMedCentralPubMedCrossRefGoogle Scholar
  173. Obeid, R., & Herrmann, W. (2006). Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Letters, 580(13), 2994–3005. doi: 10.1016/j.febslet.2006.04.088.PubMedCrossRefGoogle Scholar
  174. Obeid, R., Schadt, A., Dillmann, U., Kostopoulos, P., Fassbender, K., & Herrmann, W. (2009). Methylation status and neurodegenerative markers in Parkinson disease. Clinical Chemistry, 55(10), 1852–1860. doi: 10.1373/clinchem.2009.125021.PubMedCrossRefGoogle Scholar
  175. Oberdoerffer, P., & Sinclair, D. A. (2007). The role of nuclear architecture in genomic instability and ageing. Nature Reviews Molecular Cell Biology, 8(9), 692–702. doi: 10.1038/nrm2238.PubMedCrossRefGoogle Scholar
  176. Oh, J. H., Gertych, A., & Tajbakhsh, J. (2013). Nuclear DNA methylation and chromatin condensation phenotypes are distinct between normally proliferating/aging, rapidly growing/immortal, and senescent cells. Oncotarget, 4(3), 474–493.PubMedCentralPubMedCrossRefGoogle Scholar
  177. Palstra, R. J. (2009). Close encounters of the 3C kind: Long-range chromatin interactions and transcriptional regulation. Briefings in Functional Genomics & Proteomics, 8(4), 297–309. doi: 10.1093/bfgp/elp016.CrossRefGoogle Scholar
  178. Park, Y. S., Jin, M. Y., Kim, Y. J., Yook, J. H., Kim, B. S., & Jang, S. J. (2008). The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Annals of Surgical Oncology, 15(7), 1968–1976. doi: 10.1245/s10434-008-9927-9.PubMedCrossRefGoogle Scholar
  179. Pegoraro, G., Kubben, N., Wickert, U., Gohler, H., Hoffmann, K., & Misteli, T. (2009). Ageing-related chromatin defects through loss of the NURD complex. Nature Cell Biology, 11(10), 1261–1267. doi: 10.1038/ncb1971.PubMedCentralPubMedCrossRefGoogle Scholar
  180. Pegoraro, G., & Misteli, T. (2009). The central role of chromatin maintenance in aging. Aging, 1(12), 1017–1022.PubMedCentralPubMedGoogle Scholar
  181. Pollex, R. L., & Hegele, R. A. (2004). Hutchinson-Gilford progeria syndrome. Clinical Genetics, 66(5), 375–381. doi: 10.1111/j.1399-0004.2004.00315.x.PubMedCrossRefGoogle Scholar
  182. Popova, E. Y., Grigoryev, S. A., Fan, Y., Skoultchi, A. I., Zhang, S. S., & Barnstable, C. J. (2013). Developmentally regulated linker histone H1c promotes heterochromatin condensation and mediates structural integrity of rod photoreceptors in mouse retina. The Journal of Biological Chemistry, 288(24), 17895–17907. doi: 10.1074/jbc.M113.452144.PubMedCentralPubMedCrossRefGoogle Scholar
  183. Prakash, S., Agrawal, S., Cao, J. N., Gupta, S., & Agrawal, A. (2013). Impaired secretion of interferons by dendritic cells from aged subjects to influenza: Role of histone modifications. Age, 35(5), 1785–1797. doi: 10.1007/s11357-012-9477-8.PubMedCentralPubMedCrossRefGoogle Scholar
  184. Prieto, E., Hizume, K., Kobori, T., Yoshimura, S. H., & Takeyasu, K. (2012). Core histone charge and linker histone H1 effects on the chromatin structure of Schizosaccharomyces pombe. Bioscience, Biotechnology, and Biochemistry, 76(12), 2261–2266. doi: 10.1271/bbb.120548.PubMedCrossRefGoogle Scholar
  185. Rattner, J. B., Saunders, C., Davie, J. R., & Hamkalo, B. A. (1982). Ultrastructural organization of yeast chromatin. Journal of Cell Biology, 93(1), 217–222.PubMedCrossRefGoogle Scholar
  186. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D., & Klug, A. (1984). Structure of the nucleosome core particle at 7 resolution. Nature, 311(5986), 532–537. doi: 10.1038/311532a0.PubMedCrossRefGoogle Scholar
  187. Riggs, A. D. (1975). X inactivation, differentiation, and DNA methylation. Cytogenetics and Cell Genetics, 14(1), 9–25.PubMedCrossRefGoogle Scholar
  188. Robertson, K. D. (2005). DNA methylation and human disease. Nature Reviews Genetics, 6(8), 597–610. doi: 10.1038/nrg1655.PubMedCrossRefGoogle Scholar
  189. Robertson, K. D., Uzvolgyi, E., Liang, G., Talmadge, C., Sumegi, J., Gonzales, F. A., et al. (1999). The human DNA methyltransferases (DNMTs) 1, 3a and 3b: Coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Research, 27(11), 2291–2298.PubMedCentralPubMedCrossRefGoogle Scholar
  190. Robinson, P. J., An, W., Routh, A., Martino, F., Chapman, L., Roeder, R. G., et al. (2008). 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. Journal of Molecular Biology, 381(4), 816–825. doi: 10.1016/j.jmb.2008.04.050.PubMedCrossRefGoogle Scholar
  191. Robinson, P. J., Fairall, L., Huynh, V. A., & Rhodes, D. (2006). EM measurements define the dimensions of the “30-nm” chromatin fiber: Evidence for a compact, interdigitated structure. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6506–6511. doi: 10.1073/pnas.0601212103.PubMedCentralPubMedCrossRefGoogle Scholar
  192. Robinson, P. J., & Rhodes, D. (2006). Structure of the ‘30 nm’ chromatin fibre: A key role for the linker histone. Current Opinion in Structural Biology, 16(3), 336–343. doi: 10.1016/j.sbi.2006.05.007.PubMedCrossRefGoogle Scholar
  193. Rodrigues, H. F., Souza, T. A., Ghiraldini, F. G., Mello, M. L., & Moraes, A. S. (2014). Increased age is associated with epigenetic and structural changes in chromatin from neuronal nuclei. Journal of Cellular Biochemistry, 115(4), 659–665. doi: 10.1002/jcb.24705.PubMedCrossRefGoogle Scholar
  194. Rodriguez-Paredes, M., & Esteller, M. (2011). Cancer epigenetics reaches mainstream oncology. Nature Medicine, 17(3), 330–339. doi: 10.1038/nm.2305.PubMedCrossRefGoogle Scholar
  195. Rogakou, E. P., & Sekeri-Pataryas, K. E. (1999). Histone variants of H2A and H3 families are regulated during in vitro aging in the same manner as during differentiation. Experimental Gerontology, 34(6), 741–754.PubMedCrossRefGoogle Scholar
  196. Rogenhofer, S., Kahl, P., Mertens, C., Hauser, S., Hartmann, W., Buttner, R., et al. (2012). Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma. BJU International, 109(3), 459–465. doi: 10.1111/j.1464-410X.2011.10278.x.PubMedCrossRefGoogle Scholar
  197. Rolf, M. K. (2015). Addressing the needs of our aging population through managed long-term care. Home Healthcare Now, 33(3), 177–178. doi: 10.1097/nhh.0000000000000201.PubMedGoogle Scholar
  198. Routh, A., Sandin, S., & Rhodes, D. (2008). Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proceedings of the National Academy of Sciences of the United States of America, 105(26), 8872–8877. doi: 10.1073/pnas.0802336105.PubMedCentralPubMedCrossRefGoogle Scholar
  199. Ryan, J. M., & Cristofalo, V. J. (1972). Histone acetylation during aging of human cells in culture. Biochemical and Biophysical Research Communications, 48(4), 735–742.PubMedCrossRefGoogle Scholar
  200. Ryba, T., Hiratani, I., Lu, J., Itoh, M., Kulik, M., Zhang, J., et al. (2010). Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Research, 20(6), 761–770. doi: 10.1101/gr.099655.109.PubMedCentralPubMedCrossRefGoogle Scholar
  201. Sanyal, A., Bau, D., Marti-Renom, M. A., & Dekker, J. (2011). Chromatin globules: A common motif of higher order chromosome structure? Current Opinion in Cell Biology, 23(3), 325–331. doi: 10.1016/j.ceb.2011.03.009.PubMedCentralPubMedCrossRefGoogle Scholar
  202. Scaffidi, P., & Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. Science, 312(5776), 1059–1063. doi: 10.1126/science.1127168.PubMedCentralPubMedCrossRefGoogle Scholar
  203. Schreiber, K. H., & Kennedy, B. K. (2013). When lamins go bad: Nuclear structure and disease. Cell, 152(6), 1365–1375. doi: 10.1016/j.cell.2013.02.015.PubMedCentralPubMedCrossRefGoogle Scholar
  204. Sedelnikova, O. A., & Bonner, W. M. (2006). GammaH2AX in cancer cells: A potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle, 5(24), 2909–2913.PubMedCrossRefGoogle Scholar
  205. Sedivy, J. M., Banumathy, G., & Adams, P. D. (2008). Aging by epigenetics - A consequence of chromatin damage? Experimental Cell Research, 314(9), 1909–1917. doi: 10.1016/j.yexcr.2008.02.023.PubMedCentralPubMedCrossRefGoogle Scholar
  206. Seeber, A., Dion, V., & Gasser, S. M. (2014). Remodelers move chromatin in response to DNA damage. Cell Cycle, 13(6), 877–878. doi: 10.4161/cc.28200.PubMedCentralPubMedCrossRefGoogle Scholar
  207. Seligson, D. B., Horvath, S., McBrian, M. A., Mah, V., Yu, H., Tze, S., et al. (2009). Global levels of histone modifications predict prognosis in different cancers. The American Journal of Pathology, 174(5), 1619–1628. doi: 10.2353/ajpath.2009.080874.PubMedCentralPubMedCrossRefGoogle Scholar
  208. Sharman, E. H. (2010). Sirtuins and mammalian aging. In S. Bondy & K. Maiese (Eds.), Aging and age-related disorders oxidative stress in applied basic research and clinical practice. New York: Humana.Google Scholar
  209. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., et al. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 119(7), 941–953. doi: 10.1016/j.cell.2004.12.012.PubMedCrossRefGoogle Scholar
  210. Shin, D. M., Kucia, M., & Ratajczak, M. Z. (2011). Nuclear and chromatin reorganization during cell senescence and aging - a mini-review. Gerontology, 57(1), 76–84. doi: 10.1159/000281882.PubMedCrossRefGoogle Scholar
  211. Shumaker, D. K., Dechat, T., Kohlmaier, A., Adam, S. A., Bozovsky, M. R., Erdos, M. R., et al. (2006). Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8703–8708. doi: 10.1073/pnas.0602569103.PubMedCentralPubMedCrossRefGoogle Scholar
  212. Singhal, R. P., Mays-Hoopes, L. L., & Eichhorn, G. L. (1987). DNA methylation in aging of mice. Mechanisms of Ageing and Development, 41(3), 199–210.PubMedCrossRefGoogle Scholar
  213. So, K., Tamura, G., Honda, T., Homma, N., Endoh, M., Togawa, N., et al. (2006a). Quantitative assessment of RUNX3 methylation in neoplastic and non-neoplastic gastric epithelia using a DNA microarray. Pathology International, 56(10), 571–575. doi: 10.1111/j.1440-1827.2006.02010.x.PubMedCrossRefGoogle Scholar
  214. So, K., Tamura, G., Honda, T., Homma, N., Waki, T., Togawa, N., et al. (2006b). Multiple tumor suppressor genes are increasingly methylated with age in non-neoplastic gastric epithelia. Cancer Science, 97(11), 1155–1158. doi: 10.1111/j.1349-7006.2006.00302.x.PubMedCrossRefGoogle Scholar
  215. Solovei, I., Kreysing, M., Lanctot, C., Kosem, S., Peichl, L., Cremer, T., et al. (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell, 137(2), 356–368. doi: 10.1016/j.cell.2009.01.052.PubMedCrossRefGoogle Scholar
  216. Song, J. S., Kim, Y. S., Kim, D. K., Park, S. I., & Jang, S. J. (2012). Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathology International, 62(3), 182–190. doi: 10.1111/j.1440-1827.2011.02776.x.PubMedCrossRefGoogle Scholar
  217. Soutoglou, E., & Misteli, T. (2007). Mobility and immobility of chromatin in transcription and genome stability. Current Opinion in Genetics & Development, 17(5), 435–442. doi: 10.1016/j.gde.2007.08.004.CrossRefGoogle Scholar
  218. Sporn, J. C., Kustatscher, G., Hothorn, T., Collado, M., Serrano, M., Muley, T., et al. (2009). Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene, 28(38), 3423–3428. doi: 10.1038/onc.2009.26.PubMedCrossRefGoogle Scholar
  219. Suzuki, Y., & Craigie, R. (2007). The road to chromatin - nuclear entry of retroviruses. Nature Reviews Microbiology, 5(3), 187–196. doi: 10.1038/nrmicro1579.PubMedCrossRefGoogle Scholar
  220. Tark-Dame, M., van Driel, R., & Heermann, D. W. (2011). Chromatin folding – from biology to polymer models and back. Journal of Cell Science, 124(Pt 6), 839–845. doi: 10.1242/jcs.077628.PubMedCrossRefGoogle Scholar
  221. Tempera, I., & Lieberman, P. M. (2014). Epigenetic regulation of EBV persistence and oncogenesis. Seminars in Cancer Biology, 26, 22–29. doi: 10.1016/j.semcancer.2014.01.003.PubMedCrossRefGoogle Scholar
  222. Thoma, F., & Koller, T. (1977). Influence of histone H1 on chromatin structure. Cell, 12(1), 101–107.PubMedCrossRefGoogle Scholar
  223. Thoma, F., Koller, T., & Klug, A. (1979). Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. The Journal of Cell Biology, 83(2 Pt 1), 403–427.PubMedCrossRefGoogle Scholar
  224. Tohgi, H., Utsugisawa, K., Nagane, Y., Yoshimura, M., Genda, Y., & Ukitsu, M. (1999). Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Research. Molecular Brain Research, 70(2), 288–292.PubMedCrossRefGoogle Scholar
  225. Upadhya, B., Taffet, G. E., Cheng, C. P., & Kitzman, D. W. (2015). Heart failure with preserved ejection fraction in the elderly: Scope of the problem. Journal of Molecular and Cellular Cardiology. doi: 10.1016/j.yjmcc.2015.02.025.PubMedGoogle Scholar
  226. Uzunova, K., Georgieva, M., & Miloshev, G. (2013). Saccharomyces cerevisiae linker histone-Hho1p maintains chromatin loop organization during ageing. Oxidative Medicine and Cellular Longevity, 2013, 437146. doi: 10.1155/2013/437146.PubMedCentralPubMedCrossRefGoogle Scholar
  227. Van Den Broeck, A., Brambilla, E., Moro-Sibilot, D., Lantuejoul, S., Brambilla, C., Eymin, B., et al. (2008). Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clinical Cancer Research, 14(22), 7237–7245. doi: 10.1158/1078-0432.CCR-08-0869.CrossRefGoogle Scholar
  228. van Leeuwen, H., Okuwaki, M., Hong, R., Chakravarti, D., Nagata, K., & O’Hare, P. (2003). Herpes simplex virus type 1 tegument protein VP22 interacts with TAF-I proteins and inhibits nucleosome assembly but not regulation of histone acetylation by INHAT. The Journal of General Virology, 84(Pt 9), 2501–2510.PubMedCrossRefGoogle Scholar
  229. Verreault, A., Kaufman, P. D., Kobayashi, R., & Stillman, B. (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell, 87(1), 95–104.PubMedCrossRefGoogle Scholar
  230. Waki, T., Tamura, G., Sato, M., & Motoyama, T. (2003). Age-related methylation of tumor suppressor and tumor-related genes: An analysis of autopsy samples. Oncogene, 22(26), 4128–4133. doi: 10.1038/sj.onc.1206651.PubMedCrossRefGoogle Scholar
  231. Wang, G. P., Ciuffi, A., Leipzig, J., Berry, C. C., & Bushman, F. D. (2007). HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Research, 17(8), 1186–1194. doi: 10.1101/gr.6286907.PubMedCentralPubMedCrossRefGoogle Scholar
  232. Wang, Y., Wysocka, J., Sayegh, J., Lee, Y. H., Perlin, J. R., Leonelli, L., et al. (2004). Human PAD4 regulates histone arginine methylation levels via demethylimination. Science, 306(5694), 279–283. doi: 10.1126/science.1101400.PubMedCrossRefGoogle Scholar
  233. Wang, R. H., Zheng, Y., Kim, H. S., Xu, X., Cao, L., Luhasen, T., et al. (2008). Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Molecular Cell, 32(1), 11–20. doi: 10.1016/j.molcel.2008.09.011.PubMedCentralPubMedCrossRefGoogle Scholar
  234. Weintraub, D., Comella, C. L., & Horn, S. (2008). Parkinson’s disease–Part 1: Pathophysiology, symptoms, burden, diagnosis, and assessment. The American Journal of Managed Care, 14(2 Suppl), S40–48.PubMedGoogle Scholar
  235. Widom, J., & Klug, A. (1985). Structure of the 300A chromatin filament: X-ray diffraction from oriented samples. Cell, 43(1), 207–213.PubMedCrossRefGoogle Scholar
  236. Wilson, V. L., Smith, R. A., Ma, S., & Cutler, R. G. (1987). Genomic 5-methyldeoxycytidine decreases with age. The Journal of Biological Chemistry, 262(21), 9948–9951.PubMedGoogle Scholar
  237. Wolffe, A. P. (1998). Epigenetics. Introduction. Novartis Foundation Symposium, 214, 1–5.PubMedGoogle Scholar
  238. Wolffe, A. P., & Matzke, M. A. (1999). Epigenetics: Regulation through repression. Science, 286(5439), 481–486.PubMedCrossRefGoogle Scholar
  239. Wood, J. G., & Helfand, S. L. (2013). Chromatin structure and transposable elements in organismal aging. Frontiers in Genetics, 4, 274. doi: 10.3389/fgene.2013.00274.PubMedCentralPubMedGoogle Scholar
  240. Woodcock, C. L. (2006). Chromatin architecture. Current Opinion in Structural Biology, 16(2), 213–220. doi: 10.1016/j.sbi.2006.02.005.PubMedCrossRefGoogle Scholar
  241. Yanagawa, N., Tamura, G., Oizumi, H., Kanauchi, N., Endoh, M., Sadahiro, M., et al. (2007). Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer, 58(1), 131–138. doi: 10.1016/j.lungcan.2007.05.011.PubMedCrossRefGoogle Scholar
  242. Yuan, H., Su, L., & Chen, W. Y. (2013). The emerging and diverse roles of sirtuins in cancer: A clinical perspective. OncoTargets and Therapy, 6, 1399–1416. doi: 10.2147/OTT.S37750.PubMedCentralPubMedGoogle Scholar
  243. Zane, L., Sharma, V., & Misteli, T. (2014). Common features of chromatin in aging and cancer: Cause or coincidence? Trends in Cell Biology. doi: 10.1016/j.tcb.2014.07.001.PubMedCentralPubMedGoogle Scholar
  244. Zhang, K., Chen, Y., Zhang, Z., & Zhao, Y. (2009a). Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. Journal of Proteome Research, 8(2), 900–906. doi: 10.1021/pr8005155.PubMedCentralPubMedCrossRefGoogle Scholar
  245. Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes & Development, 13(15), 1924–1935.CrossRefGoogle Scholar
  246. Zhang, R., Poustovoitov, M. V., Ye, X., Santos, H. A., Chen, W., Daganzo, S. M., et al. (2005). Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Developmental Cell, 8(1), 19–30. doi: 10.1016/j.devcel.2004.10.019.PubMedCrossRefGoogle Scholar
  247. Zhang, Y., Zhang, M., Dong, H., Yong, S., Li, X., Olashaw, N., et al. (2009b). Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene, 28(3), 445–460. doi: 10.1038/onc.2008.388.PubMedCrossRefGoogle Scholar
  248. Zhang, L., Zhong, K., Dai, Y., & Zhou, H. (2009c). Genome-wide analysis of histone H3 lysine 27 trimethylation by ChIP-chip in gastric cancer patients. Journal of Gastroenterology, 44(4), 305–312. doi: 10.1007/s00535-009-0027-9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Roumen Tsanev”Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations