High Speed Lossless Image Compression

  • Hendrik Siedelmann
  • Alexander Wender
  • Martin Fuchs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9358)

Abstract

We introduce a simple approach to lossless image compression, which makes use of SIMD vectorization at every processing step to provide very high speed on modern CPUs. This is achieved by basing the compression on delta coding for prediction and bit packing for the actual compression, allowing a tuneable tradeoff between efficiency and speed, via the block size used for bit packing. The maximum achievable speed surpasses main memory bandwidth on the tested CPU, as well as the speed of all previous methods that achieve at least the same coding efficiency.

Notes

Acknowledgements

This research was financially supported by the Juniorprofessorenprogramm Baden-Württemberg.

References

  1. 1.
    x265 HEVC high efficiency video coding H.265 encoder (last accessed on 17 December 2014). http://x265.org/
  2. 2.
    JPEG 2000 on CUDA (last accessed on 27 May 2015). http://cuj2k.sourceforge.net/
  3. 3.
    A complete, cross-platform solution to record, convert and stream audio and video. (last accessed on 27 May 2015). https://www.ffmpeg.org
  4. 4.
    OpenJPEG library : an open source JPEG 2000 codec (last accessed on 27 May 2015). http://www.openjpeg.org/
  5. 5.
    Squash - compression abstraction library (last accessed on 27 May 2015). http://quixdb.github.io/squash
  6. 6.
    VideoLAN - x264, the best H.264/AVC encoder (last accessed on 27 May 2015). http://www.videolan.org/developers/x264.html
  7. 7.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A randomized correspondence algorithm for structural image editing. In: Proceeding of SIGGRAPH ACM Transactions on Graphics vol. 28, no. 3, August 2009Google Scholar
  8. 8.
    Burtscher, M., Ratanaworabhan, P.: FPC: a high-speed compressor for double-precision floating-point data. IEEE Trans. Comput. 58(1), 18–31 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
  10. 10.
    Deutsch, P.: Deflate compressed data format specification version 1.3. RFC 1951, May 1996. https://tools.ietf.org/html/rfc1951
  11. 11.
    Gomes, R.D., Costa, Y.G.G.d., Aquino Júnior, L.L., Silva Neto, M.G.d., Duarte, A.N., Souza Filho, G.L.d.: A solution for transmitting and displaying UHD 3d raw videos using lossless compression. In: Proceedings of the 19th Brazilian Symposium on Multimedia and the Web, pp. 173–176, WebMedia 2013. ACM, New York (2013). http://doi.acm.org/10.1145/2526188.2526228
  12. 12.
    Haglund, L.: The SVT high definition multi format test set. Swedish Television Stockholm (2006). https://media.xiph.org/video/derf/
  13. 13.
    Kau, L.J., Chen, C.S.: Speeding up the runtime performance for lossless image coding on GPUs with CUDA. In: IEEE International Symposium on Circuits and Systems (ISCAS), 2013, pp. 2868–2871, May 2013Google Scholar
  14. 14.
    Lemire, D., Boytsov, L.: Decoding billions of integers per second through vectorization. CoRR abs/1209.2137 (2012). http://arxiv.org/abs/1209.2137
  15. 15.
    Lenhardt, R., Alakuijala, J.: Gipfeli-high speed compression algorithm. In: Data Compression Conference (DCC), 2012, pp. 109–118. IEEE (2012)Google Scholar
  16. 16.
    Netravali, A., Limb, J.O.: Picture coding: a review. Proc. IEEE 68(3), 366–406 (1980)CrossRefGoogle Scholar
  17. 17.
    Niedermayer, M.: FFV1 video codec specification, August 2013. http://www1.mplayerhq.hu/michael/ffv1.html
  18. 18.
    Oberhumer, M.F.: oberhumer.com: LZO real-time data compression library (last accessed on 27 May 2015). http://www.oberhumer.com/opensource/lzo/
  19. 19.
    O’Neal, J.: Predictive quantizing systems (differential pulse code modulation) for the transmission of television signals. Bell Syst. Tech. J. 45(5), 689–721 (1966)CrossRefGoogle Scholar
  20. 20.
    O’Neil, M.A., Burtscher, M.: Floating-point data compression at 75 Gb/s on a GPU. In: Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Processing Units, pp. 7:1–7:7, GPGPU-4. ACM, New York (2011). http://doi.acm.org/10.1145/1964179.1964189
  21. 21.
    Ozsoy, A., Swany, M., Chauhan, A.: Pipelined parallel lzss for streaming data compression on GPGPUs. In: IEEE 18th International Conference on Parallel and Distributed Systems (ICPADS), 2012, pp. 37–44, December 2012Google Scholar
  22. 22.
    Richter, T., Simon, S.: Coding strategies and performance analysis of GPU accelerated image compression. Picture Coding Symp. (PCS) 2013, 125–128 (2013)Google Scholar
  23. 23.
    Seward, J.: bzip2 and libbzip2 (1996). http://www.bzip.org
  24. 24.
    Togni, R.: Description of the HuffYUV (HFYU) codec, March 2003. http://multimedia.cx/huffyuv.txt
  25. 25.
    Treib, M., Reichl, F., Auer, S., Westermann, R.: Interactive editing of gigasample terrain fields. In: Proceeding Eurographics Computer Graphics Forum, vol. 31, no. 2, pp. 383–392 (2012). http://diglib.eg.org/EG/CGF/volume31/issue2/v31i2pp383-392.pdf
  26. 26.
    Wang, Z., Klaiber, M., Gera, Y., Simon, S., Richter, T.: Fast lossless image compression with 2d golomb parameter adaptation based on JPEG-LS. In: Proceedings of the 20th European Signal Processing Conference, EUSIPCO 2012, Bucharest, Romania, August 27–31, 2012, pp. 1920–1924 (2012). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6334076
  27. 27.
    Weinberger, M., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)CrossRefGoogle Scholar
  28. 28.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theor. 23(3), 337–343 (1977)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Hendrik Siedelmann
    • 1
    • 2
  • Alexander Wender
    • 1
  • Martin Fuchs
    • 1
  1. 1.University of StuttgartStuttgartGermany
  2. 2.Heidelberg UniversityHeidelbergGermany

Personalised recommendations