Line3D: Efficient 3D Scene Abstraction for the Built Environment

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9358)

Abstract

Extracting 3D information from a moving camera is traditionally based on interest point detection and matching. This is especially challenging in the built environment, where the number of distinctive interest points is naturally limited. While common Structure-from-Motion (SfM) approaches usually manage to obtain the correct camera poses, the number of accurate 3D points is very small due to the low number of matchable features. Subsequent Multi-view Stereo approaches may help to overcome this problem, but suffer from a high computational complexity. We propose a novel approach for the task of 3D scene abstraction, which uses straight line segments as underlying features. We use purely geometric constraints to match 2D line segments from different images, and formulate the reconstruction procedure as a graph-clustering problem. We show that our method generates accurate 3D models, with a low computational overhead compared to SfM alone.

Notes

Acknowledgements

This work has been supported by the Austrian Research Promotion Agency (FFG) project FreeLine (Bridge1/843450) and OMICRON electronics GmbH.

References

  1. 1.
    Akinlar, C., Topal, C.: EDLines: real-time line segment detection by edge drawing. In: International Conference on Image Processing (ICIP) (2011)Google Scholar
  2. 2.
    Ayache, N., Faverjon, B.: Efficient registration of stereo images by matching graph descriptions of edge segments. Int. J. Comput. Vis. (IJCV) 1(2), 107–113 (1987)CrossRefGoogle Scholar
  3. 3.
    Bay, H., Ferrari, V., van Gool, L.: Wide-baseline stereo matching with line segments. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2005)Google Scholar
  4. 4.
    Donoser, M.: Replicator graph clustering. In: British Machine Vision Conference (BMVC) (2013)Google Scholar
  5. 5.
    Elqursh, A., Elgammal, A.: Line-based relative pose estimation. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  6. 6.
    Felzenszwalb, P., Huttenlocher, F.: Efficient graph-based image segmentation. Int. J. Comput. Vis. (IJCV) 59(2), 167–181 (2004)CrossRefGoogle Scholar
  7. 7.
    Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Furukawa, Y., Ponce, J.: Towards internet-scale multi-view stereo. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  9. 9.
    von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast fine segment detector with a false detection control. Trans. Pattern Anal. Mach. Intell. (PAMI) 32(4), 722–732 (2010)CrossRefGoogle Scholar
  10. 10.
    Havlena, M., Schindler, K.: VocMatch: efficient multiview correspondence for structure from motion. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part III. LNCS, vol. 8691, pp. 46–60. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Hofer, M., Donoser, M., Bischof, H.: Semi-global 3D line modeling for incremental structure-from-motion. In: British Machine Vision Conference (BMVC) (2014)Google Scholar
  12. 12.
    Hofer, M., Maurer, M., Bischof, H.: Improving sparse 3D models for man-made environments using line-based 3D reconstruction. In: International Conference on 3D Vision (3DV) (2014)Google Scholar
  13. 13.
    Hofer, M., Wendel, A., Bischof, H.: Incremental line-based 3D reconstruction using geometric constraints. In: British Machine Vision Conference (BMVC) (2013)Google Scholar
  14. 14.
    Hofer, M., Wendel, A., Bischof, H.: Line-based 3D reconstruction of wiry objects. In: Computer Vision Winter Workshop (CVWW) (2013)Google Scholar
  15. 15.
    Irschara, A., Zach, C., Bischof, H.: Towards wiki-based dense city modeling. In: International Conference on Computer Vision (ICCV) (2007)Google Scholar
  16. 16.
    Jain, A., Kurz, C., Thormaehlen, T., Seidel, H.: Exploiting global connectivity constraints for reconstruction of 3D line segments from images. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  17. 17.
    Labatut, P., Pons, J., Keriven, R.: Efficient multi-miew reconstruction of large-scale scenes using interest points, delaunay triangulation and graph cuts. In: International Conference on Computer Vision (ICCV) (2007)Google Scholar
  18. 18.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60(2), 91–110 (2004)CrossRefGoogle Scholar
  19. 19.
    Micusik, B., Wildenauer, H.: Structure from motion with line segments under relaxed endpoint constraints. In: International Conference on 3D Vision (3DV) (2014)Google Scholar
  20. 20.
    Raposo, C., Antunes, M., Barreto, J.P.: Piecewise-planar StereoScan:structure and motion from plane primitives. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 48–63. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Rothermel, M., Wenzel, K., Fritsch, D., Haala, N.: SURE: photogrammetric surface reconstruction from imagery. In: LCD Workshop (2012)Google Scholar
  22. 22.
    Rumpler, M., Daftry, S., Tscharf, A., Prettenthaler, R., Hoppe, C., Mayer, G., Bischof, H.: Automated end-to-end workflow for precise and Geo-accurate reconstructions using fiducial markers. In: Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS) (2014)Google Scholar
  23. 23.
    Schindler, G., Krishnamurthy, P., Dellaert, F.: Line-based structure from motion for urban environments. In: International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT) (2006)Google Scholar
  24. 24.
    Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: exploring image collections in 3D. ACM Trans. Graph. (SIGGRAPH) 25, 835–846 (2006)Google Scholar
  25. 25.
    Strecha, C., von Hansen, W., Van Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: International Conference on Computer Vision and Pattern Recognition (CVPR) (2008)Google Scholar
  26. 26.
    Wu, C.: Towards linear-time incremental structure-from-motion. In: International Conference on 3D Vision (3DV) (2013)Google Scholar
  27. 27.
    Zhang, L., Koch, R.: Line matching using appearance similarities and geometric constraints. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM and OAGM 2012. LNCS, vol. 7476, pp. 236–245. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  28. 28.
    Zhang, L., Xu, C., Lee, K.-M., Koch, R.: Robust and efficient pose estimation from line correspondences. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 217–230. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Yang, H., Liu, X.: A line matching method based on local and global appearance. In: International Congress on Image and Signal Processing (ICISP) (2011)Google Scholar
  30. 30.
    Zhiheng, W., Fuchao, W., Zhanyi, H.: MSLD: a robust descriptor for line matching. Pattern Recogn. 39, 889–896 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Institute for Computer Graphics and VisionGraz University of TechnologyGrazAustria

Personalised recommendations