Updatable Hash Proof System and Its Applications

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9326)

Abstract

To tackle with physical attacks to real world cryptosystems, leakage resilient cryptography was developed. In this setting, the adversary is allowed to have access to the internal state of a cryptographic system, thus violates the black-box reduction used in cryptography. Especially when considering continual memory leakage (CML), i.e., there is no predetermined bound on the leakage of the internal information, the task is extremely tough.

In this paper, we solve this problem by introducing a new primitive called updatable hash proof system (UHPS). A UHPS can be viewed as a special Hash proof system (HPS), which served as a fundamental tool in constructing public key encryption (PKE) schemes in both leakage-free and leaky settings. A remarkable property of UHPS is that by simply substituting the HPS component with a UHPS component in a PKE scheme, one obtains a new PKE scheme secure in the CML setting. Moreover, the resulting PKE scheme enjoys the same advantage of the original HPS-based PKE, for instance, still “compatible” with known transforms [8, 20, 24, 32]. We then give instantiations of UHPS from widely-accepted assumptions, including the symmetric external Diffie-Hellman assumption and the d-linear assumption. Interestingly, we notice that when instantiated with concrete assumptions, the resulting chosen-ciphertext secure PKE scheme is by far the most efficient.

Notes

Acknowledgments

We appreciate the anonymous reviewers for their valuable suggestions. This work was supported by the National Natural Science Foundation of China (Grant No. 61173139, 61472416 and 61272478), and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA06010701, XDA06010703).

References

  1. 1.
    Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: a new framework for hybrid encryption and a new analysis of kurosawa-desmedt KEM. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  2. 2.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  3. 3.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  4. 4.
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: FOCS, pp. 501–510. IEEE (2010)Google Scholar
  5. 5.
    Brumley, D., Boneh, D.: Remote timing attacks are practical. In: USENIX Security Symposium, p. 1. USENIX Association (2003)Google Scholar
  6. 6.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: STOC, pp. 106–112. ACM (1977)Google Scholar
  8. 8.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  9. 9.
    Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS, pp. 511–520. IEEE (2010)Google Scholar
  10. 10.
    Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC, pp. 621–630. ACM (2009)Google Scholar
  11. 11.
    Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky devices. In: FOCS, pp. 688–697. IEEE (2011)Google Scholar
  12. 12.
    Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 21–40. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  13. 13.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  14. 14.
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302. IEEE (2008)Google Scholar
  15. 15.
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003) Google Scholar
  16. 16.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60. USENIX Association (2008)Google Scholar
  18. 18.
    Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Hemenway, B., Ostrovsky, R.: Extended-DDH and lossy trapdoor functions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 627–643. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  20. 20.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  21. 21.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  22. 22.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996) Google Scholar
  23. 23.
    Koppula, V., Pandey, O., Rouselakis, Y., Waters, B.: Deterministic public-key encryption under continual leakage. Cryptology ePrint Archive, Report 2014/780 (2014). http://eprint.iacr.org/
  24. 24.
    Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  25. 25.
    Lewko, A., Lewko, M., Waters, B.: How to leak on key updates. In: STOC, pp. 725–734. ACM (2011)Google Scholar
  26. 26.
    Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  27. 27.
    Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  28. 28.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  29. 29.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437. ACM (1990)Google Scholar
  30. 30.
    Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an asic aes implementation. In: Information Technology: Coding and Computing, pp. 546–552. IEEE (2004)Google Scholar
  31. 31.
    Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  32. 32.
    Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  33. 33.
    Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: simple construction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 19–36. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  34. 34.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, p. 200. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  35. 35.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553. IEEE (1999)Google Scholar
  36. 36.
    Wichs, D.: Cryptographic resilience to continual information leakage. Ph.D. thesis, New York University (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyShandong UniversityJinanChina
  2. 2.State Key Laboratory of Information Security (SKLOIS), Institute of Information Engineering (IIE)Chinese Academy of Sciences (CAS)BeijingChina

Personalised recommendations