Advertisement

DBS Innovations in the Near Future?

  • Vignessh Kumar
  • Andre G. Machado
  • Adolfo Ramirez-Zamora
  • Julie G. Pilitsis
Chapter

Abstract

Advancement in deep brain stimulation (DBS) technology through the identification and development of new stimulation targets, stimulation hardware, and programming methods continues to drive innovation in stimulation treatment. In addition to the well-established DBS targets of the subthalamic nucleus (STN), the globus pallidus interna (GPi), and the ventralis intermedius (VIM) thalamus used in the treatment of Parkinson’s disease (PD), emerging targets that have recently gained attention include the zona incerta (ZI), subthalamic white matter fibers, pedunculopontine nucleus (PPN), and substantia nigra reticulata (SNr). Advances in electrode design and options in closed-loop DBS systems show promise in tailoring stimulation to individual patient preferences. Innovations in programming parameters, including interleaved stimulation and burst stimulation, can serve to optimize the balance between adequate energy delivery and reducing recharging burden. The vast future potential of these technologies is instrumental in optimizing patient outcomes and expanding potential DBS indications for years to come.

Keywords

Deep brain stimulation Surgical innovation Technology Stimulation targets Programming parameters 

References

  1. 1.
    Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–6.CrossRefGoogle Scholar
  2. 2.
    Gardner J. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc Stud Sci. 2013;43(5):707–28.CrossRefGoogle Scholar
  3. 3.
    McColl CD, Reardon KA, Shiff M, Kempster PA. Motor response to levodopa and the evolution of motor fluctuations in the first decade of treatment of Parkinson’s disease. Mov Disord. 2002;17:1227–34.CrossRefGoogle Scholar
  4. 4.
    Gopinathan G, Teravainen H, Dambrosia JM, Ward CD, Sanes JN, Stuart WK, Evarts EV, Calne DB. Lisuride in parkinsonism. Neurology. 1981;31:371–6.CrossRefGoogle Scholar
  5. 5.
    Lhommee E, Klinger H, Thobois S, Schmitt E, Ardouin C, Bichon A, Kistner A, Fraix V, Xie J, Aya Kombo M, Chabardes S, Seigneuret E, Benabid AL, Mertens P, Polo G, Carnicella S, Quesada JL, Bosson JL, Broussolle E, Pollak P, Krack P. Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain. 2012;135:1463–77.CrossRefGoogle Scholar
  6. 6.
    Weintraub D, Siderowf AD, Potenza MN, Goveas J, Morales KH, Duda JE, Moberg PJ, Stern MB. Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch Neurol. 2006;63:969–73.CrossRefGoogle Scholar
  7. 7.
    Martinez-Martin P, Valldeoriola F, Tolosa E, Pilleri M, Molinuevo JL, Rumia J, Ferrer E. Bilateral subthalamic nucleus stimulation and quality of life in advanced Parkinson’s disease. Mov Disord. 2002;17:372–7.CrossRefGoogle Scholar
  8. 8.
    Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50:344–6.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol. 2005;62:554–60.CrossRefGoogle Scholar
  10. 10.
    Krause M, Fogel W, Heck A, Hacke W, Bonsanto M, Trenkwalder C, Tronnier V. Deep brain stimulation for the treatment of Parkinson’s disease: subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry. 2001;70:464–70.CrossRefGoogle Scholar
  11. 11.
    Schupbach WM, Chastan N, Welter ML, Houeto JL, Mesnage V, Bonnet AM, Czernecki V, Maltete D, Hartmann A, Mallet L, Pidoux B, Dormont D, Navarro S, Cornu P, Mallet A, Agid Y. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry. 2005;76:1640–4.CrossRefGoogle Scholar
  12. 12.
    Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, Beute GN, van Vugt JP, Lenders MW, Contarino MF, Mink MS, Bour LJ, van den Munckhof P, Schmand BA, de Haan RJ, Schuurman PR, de Bie RM. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37–44.CrossRefGoogle Scholar
  13. 13.
    Lyons MK. Deep brain stimulation: current and future clinical applications. Mayo Clin Proc. 2011;86:662–72.CrossRefGoogle Scholar
  14. 14.
    Weaver FM, Follett KA, Stern M, Luo P, Harris CL, Hur K, Marks WJ Jr, Rothlind J, Sagher O, Moy C, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein JM, Stoner G, Starr PA, Simpson R, Baltuch G, De Salles A, Huang GD, Reda DJ, Group CSPS. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79:55–65.CrossRefGoogle Scholar
  15. 15.
    Desiraju T, Purpura DP. Synaptic convergence of cerebellar and lenticular projections to thalamus. Brain Res. 1969;15:544–7.CrossRefGoogle Scholar
  16. 16.
    Jimenez F, Velasco F, Velasco M, Brito F, Morel C, Marquez I, Perez ML. Subthalamic prelemniscal radiation stimulation for the treatment of Parkinson’s disease: electrophysiological characterization of the area. Arch Med Res. 2000;31:270–81.CrossRefGoogle Scholar
  17. 17.
    Velasco F, Jimenez F, Perez ML, Carrillo-Ruiz JD, Velasco AL, Ceballos J, Velasco M. Electrical stimulation of the prelemniscal radiation in the treatment of Parkinson’s disease: an old target revised with new techniques. Neurosurgery. 2001;49:293–306. discussion 306-298.PubMedGoogle Scholar
  18. 18.
    Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain. 2006;129:1732–47.CrossRefGoogle Scholar
  19. 19.
    Burrows AM, Ravin PD, Novak P, Peters ML, Dessureau B, Swearer J, Pilitsis JG. Limbic and motor function comparison of deep brain stimulation of the zona incerta and subthalamic nucleus. Neurosurgery. 2012;70:125–30. discussion 130-121.CrossRefGoogle Scholar
  20. 20.
    Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E, Mazzone P. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain. 2007;130:1596–607.CrossRefGoogle Scholar
  21. 21.
    Jouve L, Salin P, Melon C, Kerkerian-Le Goff L. Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson’s disease. J Neurosci. 2010;30:9919–28.CrossRefGoogle Scholar
  22. 22.
    Stefani A, Peppe A, Pierantozzi M, Galati S, Moschella V, Stanzione P, Mazzone P. Multi-target strategy for Parkinsonian patients: the role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Res Bull. 2009;78(2–3):113–8.CrossRefGoogle Scholar
  23. 23.
    Sutton AC, Yu W, Calos ME, Smith AB, Ramirez-Zamora A, Molho ES, Pilitsis JG, Brotchie JM, Shin DS. Deep brain stimulation of the substantia nigra pars reticulata improves forelimb akinesia in the hemiparkinsonian rat. J Neurophysiol. 2013;109:363–74.CrossRefGoogle Scholar
  24. 24.
    Chastan N, Westby GW, Yelnik J, Bardinet E, Do MC, Agid Y, Welter ML. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease. Brain. 2009;132:172–84.CrossRefGoogle Scholar
  25. 25.
    Weiss D, Walach M, Meisner C, Fritz M, Scholten M, Breit S, Plewnia C, Bender B, Gharabaghi A, Wachter T, Kruger R. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain. 2013;136:2098–108.CrossRefGoogle Scholar
  26. 26.
    Liu X, Ford-Dunn HL, Hayward GN, Nandi D, Miall RC, Aziz TZ, Stein JF. The oscillatory activity in the parkinsonian subthalamic nucleus investigated using the macro-electrodes for deep brain stimulation. Clin Neurophysiol. 2002;113:1667–72.CrossRefGoogle Scholar
  27. 27.
    Amirnovin R, Williams ZM, Cosgrove GR, Eskandar EN. Experience with microelectrode guided subthalamic nucleus deep brain stimulation. Neurosurgery. 2006;58:ONS96–102. discussion ONS196-102.Google Scholar
  28. 28.
    Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the fast gray matter acquisition T1 inversion recovery (FGATIR). NeuroImage. 2009;47(Suppl 2):T44–52.CrossRefGoogle Scholar
  29. 29.
    Foltynie T, Zrinzo L, Martinez-Torres I, Tripoliti E, Petersen E, Holl E, Aviles-Olmos I, Jahanshahi M, Hariz M, Limousin P. MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: efficacy and safety. J Neurol Neurosurg Psychiatry. 2011;82:358–63.CrossRefGoogle Scholar
  30. 30.
    Ben-Haim S, Asaad WF, Gale JT, Eskandar EN. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery. 2009;64:754–62. discussion 762-753.CrossRefGoogle Scholar
  31. 31.
    Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56:722–32. discussion 722-732.CrossRefGoogle Scholar
  32. 32.
    Hariz MI, Fodstad H. Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg. 1999;72:157–69.CrossRefGoogle Scholar
  33. 33.
    Gross RE, McDougal ME. Technological advances in the surgical treatment of movement disorders. Curr Neurol Neurosci Rep. 2013;13:371.CrossRefGoogle Scholar
  34. 34.
    Deniau JM, Degos B, Bosch C, Maurice N. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci. 2010;32:1080–91.CrossRefGoogle Scholar
  35. 35.
    Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R. Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. NeuroImage. 2012;60:83–94.CrossRefGoogle Scholar
  36. 36.
    Traynor CR, Barker GJ, Crum WR, Williams SC, Richardson MP. Segmentation of the thalamus in MRI based on T1 and T2. NeuroImage. 2011;56:939–50.CrossRefGoogle Scholar
  37. 37.
    Butson CR, McIntyre CC. Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng. 2006;3:1–8.CrossRefGoogle Scholar
  38. 38.
    Martens HCF, Toader E, Decre MMJ, Anderson DJ, Vetter R, Kipke DR, Baker KB, Johnson MD, Vitek JL. Spatial steering of deep brain stimulation volumes using a novel lead design. Clin Neurophysiol. 2011;122:558–66.CrossRefGoogle Scholar
  39. 39.
    Cheung KC. Implantable microscale neural interfaces. Biomed Microdevices. 2007;9:923–38.CrossRefGoogle Scholar
  40. 40.
    Rodger DC, Fong AJ, Wen L, Ameri H, Ahuja AK, Gutierrez C, Lavrov I, Hui Z, Menon PR, Meng E, Burdick JW, Roy RR, Edgerton VR, Weiland JD, Humayun MS, Tai YC. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuators B Chem. 2008;132:449–60.CrossRefGoogle Scholar
  41. 41.
    Butson CR, McIntyre CC. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimul. 2008;1:7–15.CrossRefGoogle Scholar
  42. 42.
    Okun MS, Gallo BV, Mandybur G, Jagid J, Foote KD, Revilla FJ, Alterman R, Jankovic J, Simpson R, Junn F, Verhagen L, Arle JE, Ford B, Goodman RR, Stewart RM, Horn S, Baltuch GH, Kopell BH, Marshall F, Peichel D, Pahwa R, Lyons KE, Troster AI, Vitek JL, Tagliati M, Group SDS. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol. 2012;11:140–9.CrossRefGoogle Scholar
  43. 43.
    Lee KH, Blaha CD, Garris PA, Mohseni P, Horne AE, Bennet KE, Agnesi F, Bledsoe JM, Lester DB, Kimble C, Min HK, Kim YB, Cho ZH. Evolution of deep brain stimulation: human electrometer and smart devices supporting the next generation of therapy. Neuromodulation. 2009;12:85–103.CrossRefGoogle Scholar
  44. 44.
    Van Gompel JJ, Chang SY, Goerss SJ, Kim IY, Kimble C, Bennet KE, Lee KH. Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback. Neurosurg Focus. 2010;29:E6.CrossRefGoogle Scholar
  45. 45.
    Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72:507–20.CrossRefGoogle Scholar
  46. 46.
    DeLong MR. Activity of pallidal neurons during movement. J Neurophysiol. 1971;34:414–27.CrossRefGoogle Scholar
  47. 47.
    Herron J, Chizeck H. Prototype closed-loop deep brain stimulation systems inspired by Norbert Wiener. 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW). 2014. p. 1–6.Google Scholar
  48. 48.
    Morrell MJ, Group RNSSiES. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77:1295–304.CrossRefGoogle Scholar
  49. 49.
    Okun MS, Foote KD, Wu SS, Ward HE, Bowers D, Rodriguez RL, Malaty IA, Goodman WK, Gilbert DM, Walker HC, Mink JW, Merritt S, Morishita T, Sanchez JC. A trial of scheduled deep brain stimulation for Tourette syndrome: moving away from continuous deep brain stimulation paradigms. JAMA Neurol. 2013;70:85–94.CrossRefGoogle Scholar
  50. 50.
    Kuhn AA, Trottenberg T, Kivi A, Kupsch A, Schneider GH, Brown P. The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Exp Neurol. 2005;194:212–20.CrossRefGoogle Scholar
  51. 51.
    Toledo JB, Lopez-Azcarate J, Garcia-Garcia D, Guridi J, Valencia M, Artieda J, Obeso J, Alegre M, Rodriguez-Oroz M. High beta activity in the subthalamic nucleus and freezing of gait in Parkinson’s disease. Neurobiol Dis. 2014;64:60–5.CrossRefGoogle Scholar
  52. 52.
    Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, Bennet KE, Garris PA, Blaha CD, Lee KH. Wireless instantaneous neurotransmitter concentration system-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. J Neurosurg. 2009;111:701–11.CrossRefGoogle Scholar
  53. 53.
    Shukla P, Basu I, Graupe D, Tuninetti D, Slavin KV. A neural network-based design of an on-off adaptive control for deep brain stimulation in movement disorders. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4140–3.PubMedGoogle Scholar
  54. 54.
    Lockman J, Fisher RS, Olson DM. Detection of seizure-like movements using a wrist accelerometer. Epilepsy Behav. 2011;20:638–41.CrossRefGoogle Scholar
  55. 55.
    Lee KH, Chang SY, Jang DP, Kim I, Goerss S, Gompel J, Min P, Arora K, Marsh M, Hwang SC, Kimble CJ, Garris P, Blaha C, Bennet KE. Emerging techniques for elucidating mechanism of action of deep brain stimulation. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:677–80.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324:354–9.CrossRefGoogle Scholar
  57. 57.
    LaLumiere RT. A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic. Brain Stimul. 2011;4:1–6.CrossRefGoogle Scholar
  58. 58.
    Lobo MK, Nestler EJ, Covington HE 3rd. Potential utility of optogenetics in the study of depression. Biol Psychiatry. 2012;71:1068–74.CrossRefGoogle Scholar
  59. 59.
    Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord. 2006;21(Suppl 14):S284–9.CrossRefGoogle Scholar
  60. 60.
    Moro E, Esselink RJ, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology. 2002;59:706–13.CrossRefGoogle Scholar
  61. 61.
    Holsheimer J, Demeulemeester H, Nuttin B, de Sutter P. Identification of the target neuronal elements in electrical deep brain stimulation. Eur J Neurosci. 2000;12:4573–7.PubMedGoogle Scholar
  62. 62.
    Holsheimer J, Dijkstra EA, Demeulemeester H, Nuttin B. Chronaxie calculated from current-duration and voltage-duration data. J Neurosci Methods. 2000;97:45–50.CrossRefGoogle Scholar
  63. 63.
    Umemura A, Oka Y, Yamamoto K, Okita K, Matsukawa N, Yamada K. Complications of subthalamic nucleus stimulation in Parkinson’s disease. Neurol Med Chir (Tokyo). 2011;51:749–55.CrossRefGoogle Scholar
  64. 64.
    Barbe MT, Dembek TA, Becker J, Raethjen J, Hartinger M, Meister IG, Runge M, Maarouf M, Fink GR, Timmermann L. Individualized current-shaping reduces DBS-induced dysarthria in patients with essential tremor. Neurology. 2014;82:614–9.CrossRefGoogle Scholar
  65. 65.
    Ramirez-Zamora A, Kahn M, Campbell J, DeLaCruz P, Pilitsis JG. Interleaved programming of subthalamic deep brain stimulation to avoid adverse effects and preserve motor benefit in Parkinson's disease. J Neurol. 2015;262:578–84.CrossRefGoogle Scholar
  66. 66.
    De Ridder D, Vanneste S, Plazier M, van der Loo E, Menovsky T. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery. 2010;66:986–90.CrossRefGoogle Scholar
  67. 67.
    De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg. 2013;80:642–649 e1.CrossRefGoogle Scholar
  68. 68.
    Tereshchenko J, Maddalena A, Bahr M, Kugler S. Pharmacologically controlled, discontinuous GDNF gene therapy restores motor function in a rat model of Parkinson’s disease. Neurobiol Dis. 2014;65:35–42.CrossRefGoogle Scholar
  69. 69.
    Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J, Kelleher M, Deeley S, Iwamuro H, Lefaucheur JP, Thiriez C, Fenelon G, Lucas C, Brugieres P, Gabriel I, Abhay K, Drouot X, Tani N, Kas A, Ghaleh B, Le Corvoisier P, Dolphin P, Breen DP, Mason S, Guzman NV, Mazarakis ND, Radcliffe PA, Harrop R, Kingsman SM, Rascol O, Naylor S, Barker RA, Hantraye P, Remy P, Cesaro P, Mitrophanous KA. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014;383:1138–46.CrossRefGoogle Scholar
  70. 70.
    Rowland NC, Starr PA, Larson PS, Ostrem JL, Marks WJ Jr, Lim DA. Combining cell transplants or gene therapy with deep brain stimulation for Parkinson’s disease. Mov Disord. 2015;30:190–5.CrossRefGoogle Scholar
  71. 71.
    Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology. 2009;73:1662–9.CrossRefGoogle Scholar
  72. 72.
    Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, Taylor R, Cahn-Weiner DA, Stoessl AJ, Olanow CW, Bartus RT. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 2008;7:400–8.CrossRefGoogle Scholar
  73. 73.
    Domanskyi A, Saarma M, Airavaara M. Prospects of neurotrophic factors for Parkinson’s disease: comparison of protein and gene therapy. Hum Gene Ther. 2015;26:550–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vignessh Kumar
    • 1
  • Andre G. Machado
    • 2
    • 3
  • Adolfo Ramirez-Zamora
    • 4
  • Julie G. Pilitsis
    • 1
    • 5
  1. 1.Department of NeurosurgeryAlbany Medical CenterAlbanyUSA
  2. 2.Department of NeurosurgeryCleveland Clinic, Neurologic InstituteClevelandUSA
  3. 3.Cleveland Clinic, Neurologic Institute, Center for Neurological RestorationClevelandUSA
  4. 4.Department of NeurologyUniversity of FloridaGainesvilleUSA
  5. 5.Department of Neuroscience and Experimental TherapeuticsAlbany Medical CenterAlbanyUSA

Personalised recommendations