Advertisement

Why You Trust in Visual Saliency

  • Edoardo Ardizzone
  • Alessandro BrunoEmail author
  • Luca Greco
  • Marco La Cascia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

Image understanding is a simple task for a human observer. Visual attention is automatically pointed to interesting regions by a natural objective stimulus in a first step and by prior knowledge in a second step. Saliency maps try to simulate human response and use actual eye-movements measurements as ground truth. An interesting question is: how much corruption in a digital image can affect saliency detection respect to the original image? One of the contributions of this work is to compare the performances of standard approaches with respect to different type of image corruptions and different threshold values on saliency maps. If the corruption can be estimated and/or the threshold is fixed, the results of this work can also be used to help in the selection of a method with best performance.

Keywords

Saliency maps Image corruption Image compression 

References

  1. 1.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapidscene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  2. 2.
    Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in NeuralInformation Processing Systems, vol. 19, pp. 545–552. MIT Press (2007)Google Scholar
  3. 3.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4, 219–227 (1985)Google Scholar
  4. 4.
    Luo, J.: Subject content-based intelligent cropping of digital photos. In: IEEE International Conference on Multimedia and Expo (2007)Google Scholar
  5. 5.
    Sundstedt, V., Chalmers, A., Cater, K., Debattista, K.: Topdown visual attention for efficient rendering of task related scenes. In: Vision, Modeling and Visualization, pp. 209–216 (2004)Google Scholar
  6. 6.
    Itti, L., Koch, C.: Computational modeling of visual attention. Nature Reviews Neuroscience 2(3) (2001)Google Scholar
  7. 7.
    Chen, L.-Q., Xie, X., Fan, X., Ma, W.-Y., Zhang, H.-J., Zhou, H.-Q.: A visual attention model for adapting images on small displays. ACM Multimedia Systems Journal 9(4) (2003)Google Scholar
  8. 8.
    Judd, Y., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: IEEE 12th International Conference on Computer Vision, pp. 2106–2133 (2009)Google Scholar
  9. 9.
  10. 10.
    Gide, M.S., Karam, L.J.: Comparative evaluation of visual saliency models for quality assessment task. In: International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM) (2012)Google Scholar
  11. 11.
    Redi, J., Liu, H., Zunino, R., Heynderickx, I.: Interactionsof visual attention and quality perception. Proceedings of SPIE, Human Vision and ElectronicImaging XVI 7865(1), 1–11 (2011)Google Scholar
  12. 12.
    Toet, A.: Computational versus psychophysical bottom-up image saliency: A comparative evaluation study. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(11), 2131–2146 (2011)CrossRefGoogle Scholar
  13. 13.
    Duncan, K., Sarkar, S.: Saliency in images and video: a brief survey. IET Computer Vision 6(6), 514–523 (2012)CrossRefGoogle Scholar
  14. 14.
    Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: A flexible architecture for multi-scale derivative computation, pp. 444–447 (1995)Google Scholar
  15. 15.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42, 145–175 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Rosenholtz, R.: A simple saliency model predicts a numberof motion popout phenomena. Vision Research 39(19), 3157–3163 (1999)CrossRefGoogle Scholar
  17. 17.
    Treisman, A.M., Gelade, G.: A Feature-Integration Theory of Attention. Cognitive Psychology 12(1), 97–136 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Edoardo Ardizzone
    • 1
  • Alessandro Bruno
    • 1
    Email author
  • Luca Greco
    • 1
  • Marco La Cascia
    • 1
  1. 1.DICGIMUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations