Advertisement

A Hand Gesture Approach to Biometrics

  • Nahumi Nugrahaningsih
  • Marco PortaEmail author
  • Giuseppe Scarpello
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

In this paper we present a biometric technique based on hand gestures. By means of the Microsoft Kinect sensor, the user’s hand is tracked while following a circle moving on the screen. Both 3D data about the position of the hand and 2D data about the position of the screen pointer are provided to different classifiers (SVM, Naive Bayes, Classification Tree, KNN, Random Forest and Neural Networks). Experiments carried out with 20 testers have demonstrated that the method is very promising for both identification and verification (with success rates above 90%), and can be a viable biometric solution, especially for soft biometric applications.

Keywords

Hand gesture biometrics Soft biometrics Vision-based biometrics Microsoft Kinect 

References

  1. 1.
    Okumura, F., Kubota, A., Hatori, Y., Matsuo, K., Hashimoto, M., Koike, A.: A study on biometric authentication based on arm sweep action with acceleration sensor. In: International Symposium on Intelligent Signal Processing and Communications (ISPACS 2006), pp. 219–222 (2006)Google Scholar
  2. 2.
    Matsuo, K., Okumura, F., Hashimoto, M., Sakazawa, S., Hatori, Y.: Arm swing identification method with template update for long term stability. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 211–221. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Zaharis, A., Martini, A., Kikiras, P., Stamoulis, G.: ``User authentication method and implementation using a three-axis accelerometer’’. In: Chatzimisios, P., Verikoukis, C., Santamaría, I., Laddomada, M., Hoffmann, O. (eds.) MobiLight 2010. LNICST, vol. 45, pp. 192–202. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: accelerometer-based personalized gesture recognition and its applications. In: IEEE International Conference on Pervasive Computing and Communications, PerCom 2009, pp. 1–9 (2009)Google Scholar
  5. 5.
    Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: User evaluation of lightweight user authentication with a single tri-axis accelerometer. In: 11th International Conference on Human-Computer Interaction with Mobile Devices and Services, p. 15 (2009)Google Scholar
  6. 6.
    Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L., Marca, D.: Accelerometer-based gesture control for a design environment. Pers. Ubiquitous Comput. 10(5), 285–299 (2005)CrossRefGoogle Scholar
  7. 7.
    Guna, J., Humar, I., Pogacnik, M.: Intuitive gesture based user identification system. In: 35th International Conference on Telecommunications and Signal Processing (TSP), pp. 629–633 (2012)Google Scholar
  8. 8.
    Tian, J., Qu, C., Xu, W., Wang, S.: KinWrite: handwriting-based authentication using kinect. In: 20th Annual Network & Distributed System Security Symposium (2013)Google Scholar
  9. 9.
    Fong, S., Zhuang, Y., Fister, I., Fister, I.: A biometric authentication model using hand gesture images. BioMedical Engineering OnLine 12(1), 111 (2013)CrossRefGoogle Scholar
  10. 10.
    Lai, K., Konrad, J., Ishwar, P.: Towards gesture-based user authentication. In: IEEE 9th International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 282–287 (2012)Google Scholar
  11. 11.
    Wu, J., Konrad, J., Ishwar, P.: Dynamic time warping for gesture-based user identification and authentication with kinect. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2371–2375 (2013)Google Scholar
  12. 12.
    Ball, A., Rye, D., Ramos, F., Velonaki, M: Unsupervised clustering of people from ‘skeleton’ data. In: 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 225–226 (2012)Google Scholar
  13. 13.
    Caruana, R., Freitag, D.: Greedy attribute selection. In: 11th International Conference on Machine Learning, pp. 26–36 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nahumi Nugrahaningsih
    • 1
  • Marco Porta
    • 1
    Email author
  • Giuseppe Scarpello
    • 1
  1. 1.Dip. di Ingegneria Industriale e dell’InformazioneUniversità di PaviaPaviaItaly

Personalised recommendations