Full-Reference SSIM Metric for Video Quality Assessment with Saliency-Based Features

  • Eduardo RomaniEmail author
  • Wyllian Bezerra da Silva
  • Keiko Verônica Ono Fonseca
  • Dubravko Culibrk
  • Alexandre de Almeida Prado Pohl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)


This paper uses models of visual attention in order to estimate the human visual perception and thus improve metrics of Video Quality Assessment. This work reports on the use of the saliency based model in a full-reference structural similarity metric for creating new metrics that take into account regions that greatly attract the human attention. Correlation results with the differential mean opinion score values from the LIVE Video Quality Database are presented and discussed.


Video quality assessment Salient model Human visual system 


  1. 1.
    Methodology for the Subjective Assessment of the Quality of Television Pictures, ITU-R BT.500 Std. (2002)Google Scholar
  2. 2.
    Wang, Z., Sheikh, H.R., Bovik, A.C.: No-reference perceptual quality assessment of JPEG compressed images. In: Proc. IEEE Int. Conf. Image Process., pp. 477–480 (2002)Google Scholar
  3. 3.
    Wang, Z., Li, Q.: Video quality assessment using a statistical model of human visual speed perception. J. Opt. Soc. Amer. A 24(12), B61–B69 (2007)CrossRefGoogle Scholar
  4. 4.
    Seshadrinathan, K., Bovik, A.C.: Motion-based perceptual quality assessment of video. IEEE Trans. Image Process. 19(2), 335–350 (2010)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Soundararajan, R., Bovik, A.C.: Video quality assessment by reduced reference spatio-temporal entropic differencing. IEEE Transactions on Circuits and Systems for Video Technology 3(4), 684–694 (2013)CrossRefGoogle Scholar
  6. 6.
    Silva, W.B.: Métodos sem referência baseados em características espaço-temporais para avaliação objetiva de qualidade de vídeo digital. Ph.D. dissertation, Federal Technological University - Paraná, March 2013Google Scholar
  7. 7.
    Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews Neuroscience 2(3), 194–203 (2001)CrossRefGoogle Scholar
  8. 8.
    Liang, Z., Fu, H., Chi, Z., Feng, D.: Refining a region based attention model using eye tracking data. In: Proc. IEEE Int. Conf. Image Process., pp. 1105–1008, September 2010Google Scholar
  9. 9.
    Culibrk, D., Mirkovic, M., Zlokolica, V., Pokric, M., Crnojevic, V., Kukolj, D.: Salient motion features for video quality assessment. IEEE Transactions on Image Processing 20(4), 948–958 (2011)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Wang, Y., Jiang, T., Ma, S., Gao, W.: Novel sapatio-temporal structural information based video quality metric. IEEE Transactions on Circuits and Systems for Video Technology 22(7), 989–998 (2012)CrossRefGoogle Scholar
  11. 11.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  12. 12.
    Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: Study of subjective and objective quality assessment of video. IEEE Transactions on Image Processing 19(16), 1427–1441 (2010)CrossRefMathSciNetGoogle Scholar
  13. 13.
    O’Rourke, N., Hatcher, L., Stepanski, E.J.: A Step-by-Step Approach to Using SAS for Univariate & Multivariate Statistics, 2nd edn. Wiley-Interscience New York, NY (2008)Google Scholar
  14. 14.
    Connor, C., Egeth, H., Yantis, S.: Visual attention: Bottom-up versus top-down. Current Biology 14(19), R850–R852 (2004)CrossRefGoogle Scholar
  15. 15.
    Silva, W.B., Pohl, A.A.P.: No-reference video quality assessment method based on levenberg-marquardt minimization. In: XXX Simpósio Brasileiro de Telecomunicações (SBrT 2012), September 2012Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eduardo Romani
    • 1
    Email author
  • Wyllian Bezerra da Silva
    • 2
  • Keiko Verônica Ono Fonseca
    • 1
  • Dubravko Culibrk
    • 3
  • Alexandre de Almeida Prado Pohl
    • 1
  1. 1.Graduate Program on Electrical and Computer Engineering (CPGEI), Federal Technological University–Paraná (UTFPR)CuritibaBrazil
  2. 2.Federal University of Santa Catarina – Santa Catarina (UFSC)FlorianópolisBrazil
  3. 3.Department of Industrial Engineering - Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations