Advertisement

Saliency-Based Keypoint Reduction for Augmented-Reality Applications in Smart Cities

  • Simone BuoncompagniEmail author
  • Dario Maio
  • Davide Maltoni
  • Serena Papi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

In this paper we show that Saliency-based keypoint selection makes natural landmark detection and object recognition quite effective and efficient, thus enabling augmented reality techniques in a plethora of applications in smart city contexts. As a case study we address a tour of a museum where a modern smart device like a tablet or smartphone can be used to recognize paintings, retrieve their pose and graphically overlay useful information.

Keywords

Saliency-based ranking Keypoint local descriptors Smart city Augmented reality 

References

  1. Buoncompagni, S., Maio, D., Maltoni, D., Papi, S.: Saliency-based keypoint selection for fast object detection and matching. Pattern Recognition Letters 62, 32–40 (2015). ElsevierCrossRefGoogle Scholar
  2. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. Van De Sande, K.E., Gevers, T., Snoek, C.G.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  5. Parikh, D., Jancke, G.: Localization and segmentation of a 2D high capacity color barcode. In: IEEE Workshop on Applications of Computer Vision, WACV 2008, pp. 1–6, January 7–9, 2008Google Scholar
  6. Furht, B.: Handbook of augmented reality, vol. 71. Springer, New York (2011)CrossRefGoogle Scholar
  7. Miyashita, T., et al.: An augmented reality museum guide. In: Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE Computer Society (2008)Google Scholar
  8. Damala, A., Marchal, I., Houlier, P.: Merging augmented reality based features in mobile multimedia museum guides. In: CIPA Conference on Anticipating the Future of the Cultural Past, 2007, October 1–6, 2007Google Scholar
  9. Damala, A., et al.: Bridging the gap between the digital and the physical: design and evaluation of a mobile augmented reality guide for the museum visit. In: Proceedings of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts. ACM (2008)Google Scholar
  10. Caridi, A., Coccoli, M., Volpi, V.: Wolfsoniana smart museum. a pilot plant installation of the PALM-cities project. In: UMAP Workshops (2013)Google Scholar
  11. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 105–119 (2010)CrossRefGoogle Scholar
  12. Carneiro, G., Jepson, A.D.: The quantitative characterization of the distinctiveness and robustness of local image descriptors. Image and Vision Computing 27(8), 1143–1156 (2009)CrossRefGoogle Scholar
  13. Hartmann, W., Havlena, M., Schindler, K.: Predicting matchability. In: Conference on Computer Vision and Pattern Recognition (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Simone Buoncompagni
    • 1
    Email author
  • Dario Maio
    • 1
  • Davide Maltoni
    • 1
  • Serena Papi
    • 2
  1. 1.DISIUniversità di BolognaBolognaItaly
  2. 2.CIRI ICTUniversità di BolognaCesenaItaly

Personalised recommendations