Advertisement

Generation of 3D Canonical Anatomical Models: An Experience on Carpal Bones

  • Imon BanerjeeEmail author
  • Hamid Laga
  • Giuseppe Patanè
  • Sebastian Kurtek
  • Anuj Srivastava
  • Michela Spagnuolo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

The paper discusses the initial results obtained for the generation of canonical 3D models of anatomical parts, built on real patient data. 3D canonical models of anatomy are key elements in a computer-assisted diagnosis; for instance, they can support pathology detection, semantic annotation of patient-specific 3D reconstructions, quantification of pathological markers. Our approach is focused on carpal bones and on the elastic analysis of 3D reconstructions of these bones, which are segmented from MRI scans, represented as 0-genus triangle meshes, and parameterized on the sphere. The original method [8] relies on a set of sparse correspondences, defined as matching vertices. For medical applications, it is desirable to constrain the mean shape generation to set-up the correspondences among a larger set of anatomical landmarks, including vertices, lines, and areas. Preliminary results are discussed and future development directions are sketched.

Keywords

Medical data Carpal bones Shape analysis Mean shape 

References

  1. 1.
    Banerjee, I., Agibetov, A., Catalano, C., Patané, G., Spagnuolo, M.: Semantic annotation of patient-specific 3D anatomical models. In: IEEE Proceedings of the International Conference on Cyberworlds (in press, 2015)Google Scholar
  2. 2.
    Banerjee, I., Catalano, C.E., Robbiano, F., Spagnuolo, M.: Accessing and representing knowledge in the medical field: visual and lexical modalities. In: 3D Multiscale Physiological Human, pp. 297–316. Springer, London (2014)Google Scholar
  3. 3.
    Blume, A., Chun, W., Kogan, D., Kokkevis, V., Weber, N., Petterson, R.W., Zeiger, R.: Google body: 3D human anatomy in the browser. In: ACM SIGGRAPH 2011 Talks, p. 19. ACM (2011)Google Scholar
  4. 4.
    Glaunès, J., Vaillant, M., Miller, M.: Landmark matching via large deformation diffeomorphisms on the sphere. Journal of Mathematical Imaging and Vision 20(1–2), 179–200 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 804–817. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Kurtek, S., Klassen, E., Ding, Z., Srivastava, A.: A novel Riemannian framework for shape analysis of 3D objects. In: IEEE CVPR, pp. 1625–1632 (2010)Google Scholar
  7. 7.
    Kurtek, S., Klassen, E., Gore, J.C., Ding, Z., Srivastava, A.: Elastic geodesic paths in shape space of parameterized surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(9), 1717–1730 (2012)CrossRefGoogle Scholar
  8. 8.
    Kurtek, S., Srivastava, A., Klassen, E., Laga, H.: Landmark-guided elastic shape analysis of spherically-parameterized surfaces. Comper Graphics Forum 32, 429–438 (2013)CrossRefGoogle Scholar
  9. 9.
    Moore, D.C., Crisco, J.J., Trafton, G.T., Leventhal, E.: A digital database of wrist bone anatomy and carpal kinematics. Journal of Biomechanics 40(11), 2537–2542 (2007)CrossRefGoogle Scholar
  10. 10.
    Qualter, J., Sculli, F., Oliker, A., Napier, Z., Lee, S., Garcia, J., Frenkel, S., Harnik, V., Triola, M.: The biodigital human: a web-based 3D platform for medical visualization and education. Studies in Health Technology and Informatics 173, 359–361 (2011)Google Scholar
  11. 11.
    Rajamani, T.K., Styner, A.M., Talib, H., Zheng, G., Nolte, L.P., Ballester, A.: Statistical deformable bone models for robust 3d surface extrapolation from sparse data. Medical Image Analysis 11(2), 99–109 (2007)CrossRefGoogle Scholar
  12. 12.
    Subburaj, K., Ravi, B., Agarwal, M.: Automated identification of anatomical landmarks on 3d bone models reconstructed from ct scan images. Computerized Medical Imaging and Graphics 33(5), 359–368 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Imon Banerjee
    • 1
    Email author
  • Hamid Laga
    • 2
  • Giuseppe Patanè
    • 1
  • Sebastian Kurtek
    • 3
  • Anuj Srivastava
    • 4
  • Michela Spagnuolo
    • 1
  1. 1.CNR-IMATIGenovaItaly
  2. 2.University of South AustraliaAdelaideAustralia
  3. 3.The Ohio State UniversityColumbusUSA
  4. 4.Florida State UniversityTallahasseeUSA

Personalised recommendations