Advertisement

Optimizing and Evaluating a Graph-Based Segmentation of MRI Wrist Bones

  • Sonia Nardotto
  • Roberta Ferretti
  • Laura GemmeEmail author
  • Silvana Dellepiane
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

In this paper, a quantitative evaluation of the graph-based segmentation method presented in a previous work is performed. The algorithm, starting from a single source element belonging to a region of interest, aims at finding the optimal path minimizing a new cost function for all elements of a digital volume. The method is an adaptive, unsupervised, and semi-automatic approach.

For the assessment, a training phase and a testing phase are considered. The system is able to learn and adapt to the ground truth. The performance of the method is estimated by computing classical indices from the confusion matrix, similarity measures, and distance measures.

Our work is based on the segmentation and 3D reconstructions of carpal bones derived from Magnetic Resonance Imaging (MRI) volumetric data of patients affected by rheumatic diseases.

Keywords

Quantitative evaluation 3D graph-based segmentation Carpal bones MRI volumes 

References

  1. 1.
    Gemme, L., Dellepiane, S.: A new graph-based method for automatic segmentation. In: 18th International Conference on Image Analysis and Processing, ICIAP, Genova (in press, 2015)Google Scholar
  2. 2.
    Włodarczyk, J., Czaplicka, K., Tabor, Z., Wojciechowski, W., Urbanik, A.: Segmentation of bones in magnetic resonance images of the wrist. International Journal of Computer Assisted Radiology and Surgery, 1–13 (2014)Google Scholar
  3. 3.
    Cimmino, M.A., Innocenti, S., Livrone, F., Magnaguagno, F., Silvestri, E., Garlaschi, G.: Dynamic gadolinium-enhanced magnetic resonance imaging of the wrist in patients with rheumatoid arthritis can discriminate active from inactive disease. Arthritis & Rheumatism 48(5), 1207–1213 (2003)CrossRefGoogle Scholar
  4. 4.
    Boesen, M., Østergaard, M., Cimmino, M.A., Kubassova, O., Jensen, K.E., Bliddal, H.: MRI quantification of rheumatoid arthritis: current knowledge and future perspectives. European Journal of Radiology 71(2), 189–196 (2009)CrossRefGoogle Scholar
  5. 5.
    Chang, H.H., Zhuang, A.H., Valentino, D.J., Chu, W.C.: Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47(1), 122–135 (2009)CrossRefGoogle Scholar
  6. 6.
    Heimann, T., Van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V., Bauer, C., Wolf, I.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging 28(8), 1251–1265 (2009)CrossRefGoogle Scholar
  7. 7.
    Tomatis, V., et al.: A database of segmented MRI images of the wrist and the hand in patients with rheumatic diseases. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015 Workshops. LNCS, vol. 9281, pp. 143–150. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Parascandolo, P., Cesario, L., Vosilla, L., Viano, G.: Computer aided diagnosis: state-of-the-art and application to musculoskeletal diseases. In: 3D Multiscale Physiological Human, pp. 277–296. Springer, London (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sonia Nardotto
    • 1
  • Roberta Ferretti
    • 1
  • Laura Gemme
    • 1
    Email author
  • Silvana Dellepiane
    • 1
  1. 1.DITENUniversità degli Studi di GenovaGenovaItaly

Personalised recommendations