Advertisement

A Database of Segmented MRI Images of the Wrist and the Hand in Patients with Rheumatic Diseases

  • Veronica Tomatis
  • Marco A. Cimmino
  • Francesca Barbieri
  • Giulia Troglio
  • Patrizia Parascandolo
  • Lorenzo CesarioEmail author
  • Gianni Viano
  • Loris Vosilla
  • Marios Pitikakis
  • Andrea Schiappacasse
  • Michela Moraldo
  • Matteo Santoro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9281)

Abstract

This paper is concerned with the ideation, organization and distribution of a database of segmented MRI images - and associated clinical parameters - of the wrist and the hand in patients affected by a variety of the most frequent rheumatic diseases. The final goal is empowering future biomedical research thanks to the completeness of details and cases. MRI Images were analyzed by means of the software RheumaSCORE (Softeco Sismat Srl), which performs semi-automatic segmentation of the bones, returns the volume of bones and erosions, as well as their tri-dimensional reconstruction. In order to favor its exploitation, the database of segmented images, along with many relevant clinical anthropometric parameters, are available online through the Patient Browser platform (Softeco Sismat Srl). Moreover, the original images and their clinical parameters are accessible online through the dedicated DICOM viewer QuantaView (CAMELOT Biomedical Systems Srl).

Keywords

Database Image segmentation MRI Arthritis DICOM viewer Rheumascore Patient browser Quantaview 

References

  1. 1.
    Woolf, A.D., Pfleger, B.: Burden of major musculoskeletal conditions. Bulletin of the World Health Organization 81(9) (2003)Google Scholar
  2. 2.
    American college of rheumatology subcommittee on rheumatoid arthritis: 2002 update. Guidelines for the management of Rheumatoid arthritis: 2002 update. Arthritis Rheum. 46(2), 328–346, February 2002Google Scholar
  3. 3.
    Baillet, A., Viala, C.G., Mouterde, G., et al.: Comparison of the efficacy of sonography, magnetic resonance imaging and conventional radiography for the detection of bone erosions in rheumatoid arthritis patients: a systematic review and meta-analysis. Rheumatology (Oxford) 50(6), 1137–1147 (2011)CrossRefGoogle Scholar
  4. 4.
    McQueen, F.M.: Bone marrow edema and osteitis in rheumatoid arthritis: the imaging perspective. Arthritis Res Ther. 14(5), 224 (2012). doi: 10.1186/ar4035 CrossRefGoogle Scholar
  5. 5.
    Haavardsholm, E.A., Ostergaard, M., et al.: Reliability and sensitivity to change of the OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Score in a Multireader, longitudinal setting. Arthritis and Rheumatism 52(12), 3860–3867 (2005)CrossRefGoogle Scholar
  6. 6.
    Cimmino, M.A.: Does magnetic resonance represent the gold-standard of imaging for the follow-up of arthritis? Reumatismo 58(4), 245–252 (2006)Google Scholar
  7. 7.
    Østergaard, M., Edmonds, J., McQueen, F., et al.: An introduction to the EULAR-OMERACT Rheumatoid Arthritis MRI reference image atlas. Ann. Rheum. Dis. 64, i3–i7 (2005). doi: 10.1136/ard.2004.031773 CrossRefGoogle Scholar
  8. 8.
    McQueen, F., Lassere, M., Edmonds, J., et al.: OMERACT rheumatoid arthritis magnetic resonance imaging studies. Summary of OMERACT 6 MRImaging module. J. Rheumatol. 30(6), 1387–1392 (2003)Google Scholar
  9. 9.
    Crowley, A.R., Dong, J.: A. McHaffie et all. Measuring bone erosion and edema in rheumatoid arthritis: a comparison of manual segmentation and RAMRIS methods. J. Magn. Reson. Imaging 33(2), 364–371 (2011). doi: 10.1002/jmri.22425 CrossRefGoogle Scholar
  10. 10.
    Huang, D., Wang, C.: Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recognition Letters 30, 275–284 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Machine Intell. 16, 641–647 (1994). doi: 10.1109/34.295913 CrossRefGoogle Scholar
  12. 12.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. ICCV, 694–699 (1995)Google Scholar
  13. 13.
    Chan, T., Vese, L.: Active Contours without Edges. IEEE TIP (2001)Google Scholar
  14. 14.
    American college of rheumatology subcommittee on rheumatoid arthritis. Guidelines for the management of Rheumatoid arthritis: 2002 update. Arthritis Rheum 46(2), 328–346, February 2002Google Scholar
  15. 15.
    Resnick, D.: Early abnormalities of pisiform and triquetrum in rheumatoid arthritis. Ann. Rheum. Dis. 35(1), 46–50 (1976)CrossRefGoogle Scholar
  16. 16.
    Lange. Mc Graw Hill Education. Current medical diagnosis & treatement 2015Google Scholar
  17. 17.
    Gentili, A.: Advanced imaging of gout. Semin. muscoloskelet Raiol. 7(3), 165–174 (2003)CrossRefGoogle Scholar
  18. 18.
    Dalbeth, N., et al.: Mechanisms of bone erosion in gout: a quantitative analysis using plain radiography and computed tomography. Ann. Rheum. Dis. 68(8), 1290–1295 (2009)CrossRefGoogle Scholar
  19. 19.
    Gonzalez-Lopez, L., Gamez-Nava, J.I., Jhangri, G.S., Ramos-Remus, C., Russell, A.S., Suarez-Almazor, M.E.: Prognostic factors for the development of rheumatoid arthritis and other connective tissue diseases in patients with palindromic rheumatism. J. Rheumatol. 26(3), 540–545 (1999)Google Scholar
  20. 20.
    Avouac, J., Guerrini, H., Wipff, J., et al.: Radiological hand involvement in systemic sclerosis. Ann. Rheum. Dis. 65(8), 1088–1092 (2006)CrossRefGoogle Scholar
  21. 21.
    Ejbjerg, B., Narvestad, E., Jacobsen, S., et al.: Optimized low cost, low field dedicated extremity MRI is highly specific and sensitive for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: comparison with conventional high field MRI and radiography. Ann. Rheum. Dis. 64, 1280–1287 (2005)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Parascandolo, P., Cesario, L., Vosilla, L., Viano, G.: Computer aided diagnosis: state-of-the-art and application to musculoskeletal diseases. In: 3D Multiscale Physiological Human, pp. 277–296. Springer London (2014)Google Scholar
  24. 24.
    Parascandolo, P., Cesario, L., Vosilla, L., Pitikakis, M., Viano, G.: Smart brush: a real time segmentation tool for 3D medical images. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 689–694, September 4–6, 2013Google Scholar
  25. 25.
    Barbieri, F., Parascandolo, P., Vosilla, L., Cesario, L., Viano, G., Cimmino, M.A.: Assessing MRI erosions in the rheumatoid wrist: a comparison between RAMRIS and a semiautomated segmentation software. Ann. Rheum. Dis. 71(Suppl 3) (2012)Google Scholar
  26. 26.
    Catalano, C.E., Robbiano, F., Parascandolo, P., Cesario, L., Vosilla, L., Barbieri, F., Spagnuolo, M., Viano, G., Cimmino, M.A.: Exploiting 3D part-based analysis, description and indexing to support medical applications. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2012. LNCS, vol. 7723, pp. 21–32. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proc. of ACM SIGGRAPH, pp. 163–169 (1987)Google Scholar
  28. 28.
    Kocijan, R., Harre, U., Schett, G.: ACPA and bone loss in rheumatoid arthritis. Curr. Rheumatol. Rep. 15(10), 366 (2013). doi: 10.1007/s11926-013-0366-7 CrossRefGoogle Scholar
  29. 29.
    Doghramji, P.P., Wortmann, R.L.: Hyperuricemia and gout: new concepts in diagnosis and management. Postgrad. Med. 124(6), 98–109 (2012). doi: 10.3810/pgm.2012.11.2616 CrossRefGoogle Scholar
  30. 30.
    Sulli, A., Ruaro, B., Alessandri, E., et al.: Correlations between nailfold microangiopathy severity, finger dermal thickness and fingertip blood perfusion in systemic sclerosis patients. Ann. Rheum. Dis. 73(1), 247–251 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Veronica Tomatis
    • 1
  • Marco A. Cimmino
    • 1
  • Francesca Barbieri
    • 1
  • Giulia Troglio
    • 2
  • Patrizia Parascandolo
    • 2
  • Lorenzo Cesario
    • 2
    Email author
  • Gianni Viano
    • 2
  • Loris Vosilla
    • 2
  • Marios Pitikakis
    • 2
  • Andrea Schiappacasse
    • 3
  • Michela Moraldo
    • 3
  • Matteo Santoro
    • 3
  1. 1.Dipartimento di Medicina Interna, Clinica ReumatologicaUniversità di GenovaGenoaItaly
  2. 2.Softeco Sismat S.r.lGenoaItaly
  3. 3.Camelot Biomedical Systems S.r.l.GenoaItaly

Personalised recommendations