Advertisement

Boron pp 139-180 | Cite as

Big Borane Assemblies, Macropolyhedral Species and Related Chemistry

  • John D. KennedyEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 20)

Abstract

Structural and behavioral chemistries based on carbon hydrides are extensive. It can be argued that chemistries based on boron hydrides are in principle similarly extensive. Molecular chemistry based on boron-hydrides is characterised by cluster formation, and has been dominated by work on single-cluster compounds. For an extensive ‘big molecule’ chemistry based on boron hydrides – one that rivals the extent of chemistry based on carbon hydrides – a chemistry that is based on the intimate fusion of single-cluster borane-based entities, to generate so-called ‘macropolyhedral’ species, has developed. In contrast to carbon-based chemistry, and thence with no natural feedstocks available, boron-containing cluster chemistry is entirely a human-made creation, and so the area necessarily progresses by exploratory experimental chemistry augmented more recently by computational approaches. This chapter attempts to offer a perspective on aspects of the field of larger borane-based molecular compounds from the approach of preparative and pragmatic bench science, and, in accord with the general theme of this volume, points out areas in which calculational chemistry has played a role and in which useful future roles can be envisaged. Following from the initial elucidation – now more than about thirty years ago – of most of the basic binary boron-hydride macropolyhedrals, an emphasis is placed on subsequent work which has largely been concerned with metallaboranes, thiaboranes and metallathiaboranes, as well as very intimately fused globular ‘megaloborane’ entities.

Keywords

Boron Atom Fusion Mode Boron Hydride Bridge Hydrogen Atom Cluster Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beckett MA, Crook JE, Greenwood NN, Kennedy JD, McDonald WS (1982) Molecular structure of the seventeen-vertex conjuncto platinaheptadecaborane [(PMe2Ph)PtB16H18(PMe2Ph)]. J Chem Soc Chem Commun 1982:552–553CrossRefGoogle Scholar
  2. 2.
    Beckett MA, Crook JE, Greenwood NN, Kennedy JD (1983) A macropolyhedral polymetallaborane cluster: molecular structure of the seventeen-vertex triplatinaheptadecaborane [(PPhMe2)4Pt3B14H16]. J Chem Soc Chem Commun 1983:1228–1230CrossRefGoogle Scholar
  3. 3.
    Williams RE (1971) Carboranes and boranes: polyhedra and polyhedral fragments. Inorg Chem 18:210–214CrossRefGoogle Scholar
  4. 4.
    Williams RE (1976) Coordination number pattern recognition theory of carborane structures. Adv Inorg Chem Radiochem 18:67–142Google Scholar
  5. 5.
    Wade K (1971) The structural significance of the number of skeletal bonding electron pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds. Chem Commun 1971:792–793CrossRefGoogle Scholar
  6. 6.
    Wade K (1976) Structural and bonding patterns in cluster chemistry. Adv Inorg Chem Radiochem 10:1–66Google Scholar
  7. 7.
    Mingos DMP (1972) A general theory for cluster and ring compounds of the main group and transition elements. Nat Phys Sci 236:99–102CrossRefGoogle Scholar
  8. 8.
    O’Neill ME, Wade K (1982) Chapter 1: Structural and bonding features in metallaboranes and metallacarboranes. In: Grimes RN (ed) Metal interactions with boron clusters. Plenum, New York, pp 1–41. ISBN 0-306-40933-XGoogle Scholar
  9. 9.
    Mingos DMP (1984) Polyhedral skeletal electron-pair approach. Acc Chem Res 17:311–319CrossRefGoogle Scholar
  10. 10.
    Kennedy JD (1998) Chapter 3: Disobedient Skeletons. In: Casanova J (ed) The borane carborane carbocation continuum. Wiley, New York/Chichester, pp 85–116. ISBN 0-471-18075-0Google Scholar
  11. 11.
    Enrione RE, Boer FB, Lipscomb WN (1964) Preparation, isolation, and structure of B8H12. J Am Chem Soc 86:1451–1452CrossRefGoogle Scholar
  12. 12.
    Enrione RE, Boer FB, Lipscomb WN (1964) Octaborane(12). Inorg Chem 3:1659–1666CrossRefGoogle Scholar
  13. 13.
    See, for example: Guggenberger LJ (1969) Crystal structure of tetraamminezinc octahydrooctaborate(−2). Zn(NH3)4B8H8. Inorg Chem 8: 2771–2774; and references thereinGoogle Scholar
  14. 14.
    Jelínek T, Štíbr B, Kennedy JD, Thornton-Pett M (1995) Eight-vertex polyhedral monocarbaborane chemistry. Three closo anions, [CB7H8]¯, [CB7H7I]¯, [CB7H6I2]¯. Preparation and structural studies. J Chem Soc Dalton Trans 1995:431–437CrossRefGoogle Scholar
  15. 15.
    Wiersema RE, Hawthorne MF (1973) Electrochemistry and boron-11 nuclear magnetic resonance spectra of monocarbon carboranes. Inorg Chem 12:785–788CrossRefGoogle Scholar
  16. 16.
    Tolpin EI, Lipscomb WN (1973) Fluxional behavior of undecahydroundecaborate(2-) (B11H11 2−). J Am Chem Soc 95:2384–2386CrossRefGoogle Scholar
  17. 17.
    Volkov O, Paetzold P (2003) The chemistry of the undecaborates. J Organomet Chem 680:301–311CrossRefGoogle Scholar
  18. 18.
    Štíbr B, Kennedy JD, Drdáková E, Thornton-Pett M (1994) Nine-vertex polyhedral iridamonocarbaborane chemistry. Single-crystal X-ray diffraction analysis and NMR studies of the products of thermolysis of [(CO)(PPh3)2IrCB7H8]. Emerging alternative systematic cluster-geometry patterns. J Chem Soc Dalton Trans 1994:229–236CrossRefGoogle Scholar
  19. 19.
    Bould J, Kennedy JD, Thornton-Pett M (1992) Ten-vertex metallaborane chemistry. Aspects of the iridadecaborane closo-isonido-isocloso structural continuum. J Chem Soc Dalton Trans 1992:563–576CrossRefGoogle Scholar
  20. 20.
    See, for example: Bould J, Harrington RW, Clegg W, Kennedy JD (2012) Nine-vertex metallaborane chemistry. Preparation and characterisation of [1,1,1-(PMe3)2H-isocloso-IrB8H7-8-X], where X = Cl or H. J Organomet Chem (TP Fehlner 75th Birthday Edition) 721/722:155–163Google Scholar
  21. 21.
    Bould J, Kennedy JD (2014) An Assessment of the use of DFT calculations to investigate the intercarbon stretching phenomenon in C-substituted ‘pseudocloso’-3,1,2-MC2B9 metalladicarbaboranes. J Organomet Chem 749:163–173CrossRefGoogle Scholar
  22. 22.
    Kennedy RD, Kennedy JD (2015) The contrarotational fluxionality of [3,3-(PMe2Ph)2-closo-3,1,2-PtC2B9H11] and related species. Dalton Trans 44:9620–9629Google Scholar
  23. 23.
    Fehlner TP (1999) Connections Between 11B NMR Chemical Shifts and Electronic Structure in Metallaboranes. A Précis. Collect Czech Chem Commun 64:767–782CrossRefGoogle Scholar
  24. 24.
    Londesborough MGS (2002) New developments in macropolyhedral metallaborane chemistry. Thesis, University of Leeds, LeedsGoogle Scholar
  25. 25.
    Volkov O, Rath NP, Barton L (2003) Derivatization of the macropolyhedral cluster [B22H22]2− : Isolation and characterization of the 5′-OEt- and 4‵-OH derivatives. J Organomet Chem 608:212–217CrossRefGoogle Scholar
  26. 26.
    See, for example: Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2002) Electronic requirements for macropolyhedral boranes. Chem Rev 102:93–144Google Scholar
  27. 27.
    Rathke J, Schaeffer R (1977) New boron hydride, pentadecaborane(23). J Am Chem Soc 95:3402–3402CrossRefGoogle Scholar
  28. 28.
    Greenwood NN, McGinnety JA, Owen JD (1972) Crystal structure of bis [bis(diethyl ether)-μ-(dodecahydro-nido-decaborato)-cadmium], [(Et2O)2Cd(B10H12)]2. J Chem Soc Dalton Trans 1972:989–992CrossRefGoogle Scholar
  29. 29.
    Parker KG, Russell JM, Sabat M, Grimes RN (1999) A novel heterooctametallic metallacarborane tetramer. Collect Czech Chem Commun 64:819–828CrossRefGoogle Scholar
  30. 30.
    Gaines DF, Walsh JL (1978) Chemistry of 2-berylla-nido-hexaborane(11) compounds. Insertion of beryllium into a borane cage. Inorg Chem 17:1238–1241CrossRefGoogle Scholar
  31. 31.
    Gaines DF, Walsh JL, Calabrese JC (1978) Low-temperature crystal and molecular structures of 2-tetrahydroborato-2-berylla-nido-hexaborane(11) and 2,2′-commo-bis [2-berylla-nido-hexaborane(11)]. Inorg Chem 17:1242–1248CrossRefGoogle Scholar
  32. 32.
    Gaines DF (1980) Recent advances in the chemistry of pentaborane(9). In: Parry RW, Kodama G (eds) Boron Chemistry-4. Pergamon, Oxford/New York, pp 73–79. ISBN 0-08-025256-7Google Scholar
  33. 33.
    Bicerano J, Lipscomb WN (1979) Molecular orbital studies of nido-beryllaboranes, B5H10BeX, where X is borane(4), pentaborane(10), methyl, or cyclopentadiene. Inorg Chem 18:1565–1571CrossRefGoogle Scholar
  34. 34.
    Hawthorne MF, Young DC, Wegner PA (1965) Carbametallic boron hydride derivatives. I. Apparent analogs of ferrocene and ferricinium Ion. J Am Chem Soc 87:1818–1819CrossRefGoogle Scholar
  35. 35.
    Hawthorne MF, Pilling PL (1965) Carbametallic boron hydride derivatives. III. The π-C5H5Fe(π-B9C2H11) system. J Am Chem Soc 87:3987–3988Google Scholar
  36. 36.
    Hawthorne MF, Andrews TD (1965) Carborane analogues of cobalticinium ion. Chem Commun 1965:443–444Google Scholar
  37. 37.
    Pitochelli AR, Hawthorne MF (1962) The Preparation of a New Boron Hydride B18H22. J Am Chem Soc 82:3218–3218CrossRefGoogle Scholar
  38. 38.
    Heřmánek S, Fetter K, Plešek J (1972) A new stable borane B14H18. Chem Ind (London) 1972:606–606Google Scholar
  39. 39.
    Heřmánek S, Fetter K, Plešek J, Todd LJ, Garber AR (1975) Tetradecaborane(18). Preparation and structure. Inorg Chem 14:2250–2253CrossRefGoogle Scholar
  40. 40.
    Plešek J, Heřmánek S, Hanousek F (1968) Chemistry of Boranes X. Novel stable borane B16H20. Collect Czech Chem Commun 33:699–705CrossRefGoogle Scholar
  41. 41.
    Rathke J, Moody DC, Schaeffer R (1974) Boranes. XLI. New boron hydride, tridecaborane(19). Inorg Chem 13:3040–3042CrossRefGoogle Scholar
  42. 42.
    Rathke J, Schaeffer R (1974) Boranes XXXVIII. Reactions of hexaborane(10) with boron hydride Lewis acids. Inorg Chem 13:3008–3011CrossRefGoogle Scholar
  43. 43.
    Dolan PJ, Moody DC, Schaeffer R (1981) Studies of boranes. 48. Reactions of hexaborane(10) with Lewis acids to yield acid–base complexes and synthesis of halogenated hexaborane(10) derivatives via halogen-transfer reactions. Inorg Chem 20:745–748CrossRefGoogle Scholar
  44. 44.
    Dixon DA, Kleier DA, Halgren TA, Lipscomb WN (1974) Localized orbitals in large boron hydrides. Hexadecaborane and related molecules. J Am Chem Soc 96:2293–2295CrossRefGoogle Scholar
  45. 45.
    Bould J, Jelínek T, Barrett SA, Coles SJ, Hursthouse MB, Thornton-Pett M, Štíbr B, Kennedy JD (2005) Macropolyhedral boron-containing cluster chemistry. The reaction of B16H20 and B14H18 with [PtMe2(PMe2Ph)2] to give [(PMe2Ph)2PtB16H17Me] and [(PMe2Ph)2PtB14H16]. Dalton Trans 2005:1499–1503CrossRefGoogle Scholar
  46. 46.
    Carr MJ, Perera SD, Jelínek T, Kilner CA, Štíbr B, Kennedy JD (2005) Macropolyhedral boron-containing cluster chemistry. An unusual ‘neo-nido’ ten-vertex subcluster configuration in a [(PPh3)2RuB16H20] species. J Organomet Chem (EUROBORON 3 Special Edition) 690:2857–2859CrossRefGoogle Scholar
  47. 47.
    Carr MJ, Perera SD, Jelínek T, Štíbr B, Clegg W, Kilner CA, Kennedy JD (2007) Macropolyhedral boron-containing cluster chemistry. The unique nido-five-vertex-〈B2〉-nido-ten-vertex conjuncto structure of [(η5-C5Me5)2Rh2B11H15] via an unexpected cluster-dismantling. Chem Commun 2007:3559–3561Google Scholar
  48. 48.
    Bould J, Dörfler U, Thornton-Pett M, Kennedy JD (2001) A rearrangement of the ten-boron nido/arachno decaboranyl cluster. Inorg Chem Commun 4:544–546CrossRefGoogle Scholar
  49. 49.
    Jelínek T, Grüner B, Císařová I, Štíbr B, Kennedy JD (2007) Macropolyhedral boron-containing cluster chemistry. The reaction of syn-B18H22 with SMe2 and I2 in monoglyme. Structure of [7-(SMe2)-syn-B18H20]. Inorg Chem Commun 10:125–128CrossRefGoogle Scholar
  50. 50.
    Olsen FP, Vasavada RC, Hawthorne MF (1968) The chemistry of n-B18H22 and i-B18H22. J Am Chem Soc 90:3946–3951CrossRefGoogle Scholar
  51. 51.
    Heřmánek S, Plotová H (1970) Chemistry of Boranes. XXII. The acidity of boranes. Collect Czech Chem Commun 36:1639–1643CrossRefGoogle Scholar
  52. 52.
    Heřmánek S, Plotová H, Plešek J (1975) On the acidity characteristics of decaborane(14) and its benzyl derivatives in organic solvent-water systems. Collect Czech Chem Commun 40:3593–3601CrossRefGoogle Scholar
  53. 53.
    Stanko VI, Chapovskii YA, Brattsev VA, Zakharkin LI (1965) The chemistry of decaborane and its derivatives. Russ Chem Rev 34:424–439CrossRefGoogle Scholar
  54. 54.
    Sneath RL, Todd LJ (1973) Transition metal and carborane derivatives obtained from octadecaborane(22). Inorg Chem 12:44–48CrossRefGoogle Scholar
  55. 55.
    Carr MJ, Perera SD, Hamilton Mcleod AR, Londesborough MGS, Jelínek T, Štíbr B, Kilner CA, Thornton-Pett M, Kennedy JD (2010) Aspects of macropolyhedral boron-containing cluster chemistry – August 2010. Abstracts Fifth European Meeting on Boron Chemistry (EUROBORON 5). Edinburgh, Scotland, 29 August – 02 September 2010, Abstract no. O25, p 46Google Scholar
  56. 56.
    Londesborough MGS, Dolanský J, Cerdán L, Lang K, Jelínek T, Garcia-Moreno I, Oliva J, Hnyk D, Roca-Sanjuán D, Nikl M, Kennedy JD (2015) Products of the reaction between anti-B18H22 and pyridine. Work in preparation for publicationGoogle Scholar
  57. 57.
    Huffman JC, Moody DC, Schaeffer R (1975) New boron hydride. Tetradecaborane(20). J Am Chem Soc 97:1621–1622CrossRefGoogle Scholar
  58. 58.
    Huffman JC, Moody DC, Schaeffer R (1981) Studies of boranes. 47. Synthesis and x-ray crystallographic study of tetradecaborane(20). Inorg Chem 20:741–745CrossRefGoogle Scholar
  59. 59.
    Brewer CT, Grimes RN (1984) Metal-induced oxidative fusion of boranes. Synthesis of dodecaborane(16), the first neutral dodecaborane. J Am Chem Soc 106:2722–2723CrossRefGoogle Scholar
  60. 60.
    Jelínek T, Kennedy JD, Štíbr B (1994) Macropolyhedral boron-containing cluster chemistry. Cluster fusion to give the novel nido-nido eighteen-vertex dithiaoctadecaborane (anti)-[9,9′-S2B16H16]. J Chem Soc Chem Commun 1994:1415–1416CrossRefGoogle Scholar
  61. 61.
    Dosangh PK, Bould J, Londesborough MGS, Jelínek T, Thornton-Pett M, Štíbr B, Kennedy JD (2003) Macropolyhedral boron-containing cluster chemistry. Aspects of the S2B16H16 system. Preparation, structure, NMR spectroscopy and isomerism. J Organomet Chem 680:312–322CrossRefGoogle Scholar
  62. 62.
    Kaur P, Thornton-Pett M, Clegg W, Kennedy JD (1996) Macropolyhedral boron-containing cluster chemistry. An interesting nineteen-vertex dithianickelaborane, [(PPh3)NiS2B16H12(PPh3)]. J. Chem Soc Dalton Trans 1996:4155–4157Google Scholar
  63. 63.
    Carr MJ, Clegg W, Kilner CA, Londesborough MGS, Kennedy JD (2010) Macropolyhedral boron-containing cluster chemistry. [S2B16H17] - a new eighteen-vertex thiaborane anion. Collect Czech Chem Commun (B Štíbr 70th Birthday Edition) 75:807–812CrossRefGoogle Scholar
  64. 64.
    Jelínek T, Kilner C, Thornton-Pett M, Kennedy JD (1999) Macropolyhedral boron-containing cluster chemistry. The [SB17H19] anion: a nido-ten-vertex : arachno-ten-vertex cluster architecture and the first single-sulphur macropolyhedral thiaborane. Chem Commun 1999:1905–1906Google Scholar
  65. 65.
    Kaur P, Holub J, Rath NP, Bould J, Barton L, Štíbr B, Kennedy JD (1996) Macropolyhedral boron-containing cluster chemistry. Nineteen-vertex S2B17H17(SMe2). An unusual apical boron atom of cluster connectivity six that introduces a new polyhedral borane building block. Chem Commun 1996:273–275CrossRefGoogle Scholar
  66. 66.
    Jelínek T, Kennedy JD, Štíbr B, Thornton-Pett M (1998) Macropolyhedral boron-containing cluster chemistry. An interesting angular change in mutual subcluster orientation in the oxidative protonation of [S2B17H18] to give [S2B17H16]. Inorg Chem Commun 1:179–181CrossRefGoogle Scholar
  67. 67.
    Jelínek T, Kennedy JD, Štíbr B, Thornton-Pett M (1994) Macropolyhedral boron-containing cluster chemistry. The isolation and characterisation of the first macropolyhedral thiaborane [9,9′-S2B17H18]. Angew Chem Int Edn 33:1599–1601Google Scholar
  68. 68.
    Ormsby DL, Greatrex R, Kennedy JD (2008) Macropolyhedral boron-containing cluster chemistry. The {S2B18} system. The reversible disassembly and reassembly of the hexagonal pyramidal {B7} feature in the [S2B18H19] anion. An establishment of molecular structures, intermediates and transition states by the DFT-structure/GIAO-NMR method. Dalton Trans (K Wade Special Edition) (‘Hot Paper’) 2008:1625–1634Google Scholar
  69. 69.
    Jelínek T, Cisařová I, Štíbr B, Kennedy JD, Thornton-Pett M (1998) Macropolyhedral boron-containing cluster chemistry. The [S2B18H19] anion, and the reversible generation of an apical boron cluster site with cluster connectivity six. J Chem Soc Dalton Trans (Dalton Commun) 1998:2965–2967CrossRefGoogle Scholar
  70. 70.
    Kennedy JD (1986) The polyhedral metallaboranes, part II. Prog Inorg Chem 34:211–434. ISBN 0-471-81948-4Google Scholar
  71. 71.
    Cheek YM, Greenwood NN, Kennedy JD, McDonald WS (1982) New modes of bonding in some platinum derivatives of B18H22: X-ray structures of [(PMe2Ph)4Pt212-B18H16] and of three structural isomers of [(PMe2Ph)2PtB18H20]. J Chem Soc Chem Commun 1982:80–81Google Scholar
  72. 72.
    Fontaine XLR, Greenwood NN, Kennedy JD, MacKinnon PI, Thornton-Pett M (1986) Preparation of [(C5Me5)2Rh2B17H18] via a degradative insertion from anti-B18H22, and a mechanism for anti → syn macropolyhedral interconversion. J Chem Soc. Chem Commun 1986:1111–1113CrossRefGoogle Scholar
  73. 73.
    Shea SL, Bould J, Londesborough MGS, Perera SD, Franken A, Ormsby DL, Jelínek T, Štíbr B, Holub J, Kilner CA, Thornton-Pett M, Kennedy JD (2003) Polyhedral boron-containing cluster chemistry. Aspects of architecture beyond the icosahedron: some recent supermolecular and supramolecular developments. Pure Appl Chem 75:1239–1248CrossRefGoogle Scholar
  74. 74.
    Bernhardt E, Brauer DJ, Finze M, Willner H (2007) closo-[B21H18]: a face-fused diicosahedral borate ion. Angew Chem Int Ed 46:2927–2930Google Scholar
  75. 75.
    Schlüter F, Bernhardt E (2012) Fluorierung von closo,closo-[B21H18] mit aHF und F2 zu closo,closo-[B21H18–xFx] (x = 1–3) und closo,closo-[B21F18]. Z Anorg Allg Chem 638:594–561CrossRefGoogle Scholar
  76. 76.
    Enemark JH, Friedman LB, Lipscomb WN (1966) The molecular and crystal structure of B20H16(NCCH3)2 · CH3CN. Inorg Chem 5:2165–2172CrossRefGoogle Scholar
  77. 77.
    Shea SL, Jelínek T, Štíbr B, Thornton-Pett M, Kennedy JD (2000) Macropolyhedral boron-containing cluster chemistry. Isolation and structure of the twenty-one-vertex globular cluster compound [(η5-C5Me5)3Ir3B18H15(OH)]. Inorg Chem Commun 3:169–172CrossRefGoogle Scholar
  78. 78.
    Kennedy JD (1997) Macropolyhedral boron-containing cluster chemistry. Overview and recent developments. July 1996. In: Siebert W (ed) Advances in Boron Chemistry. Royal Society of Chemistry, Cambridge, pp 451–462. ISBN 0-08504-722-0Google Scholar
  79. 79.
    McGrath TD, Kennedy JD, McInnes YM, Thornton-Pett M (1997) Macropolyhedral platinaboranes. In: Siebert W (ed) Advances in Boron Chemistry. Royal Society of Chemistry, Cambridge, pp 480–483. ISBN 0-08504-722-0Google Scholar
  80. 80.
    Jelínek T, Štíbr B, Kennedy JD, Thornton-Pett M (1997) Excursions into the country of fused-cluster heteroboranes. In: Siebert W (ed) Advances in Boron Chemistry. Royal Society of Chemistry, Cambridge, pp 426–429Google Scholar
  81. 81.
    Yao H-J, Hu C-H, Sun J, Jin R-S, Zheng P-J, Bould J, Greatrex R, Kennedy JD, Ormsby DL, Thornton-Pett M (1999) Isolation and structure of [(PPh3)3(PPh2)2Pd4B20H16]. A possible prognostic for new globular borane-based cluster architectures. Collect Czech Chem Commun 64:927–937CrossRefGoogle Scholar
  82. 82.
    Bould J, Ormsby DL, Yao H-J, Hu C-H, Sun J, Jin R-S, Shea SL, Clegg W, Jelínek T, Rath NP, Thornton-Pett M, Greatrex R, Zheng P-J, Barton L, Štíbr B, Kennedy JD (2000) Macropolyhedral boron-containing cluster chemistry. Further Progress beyond the Icosahedron. July 1999. In: Davidson M, Hughes AK, Marder TB, Wade K (eds) Contemporary boron chemistry. Royal Society of Chemistry, Cambridge, UK, pp 171–174. ISBN 0-85404-835-09CrossRefGoogle Scholar
  83. 83.
    Bould J, Kennedy JD, Barton L, Rath NP (1997) Macropolyhedral boron-containing cluster chemistry. Triple cluster fusion and the molecular structure of [(PMe3)2IrB26H24Ir(CO)(PMe3)2]. A 28-vertex metallaborane cluster with a polyboron core. J Chem Soc Chem Commun 1997:2405–2407CrossRefGoogle Scholar
  84. 84.
    Bould J, Clegg W, Teat SJ, Barton L, Rath NP, Thornton-Pett M, Kennedy JD (1999) An approach to megaloboranes. Mixed and multiple cluster fusions involving iridaborane and platinaborane cluster compounds. Crystal structure determinations by conventional and synchrotron methods. In: Boron Chemistry at the Millennium, Special Edition of Inorg Chim Acta 289:95–124Google Scholar
  85. 85.
    Mingos DMP, Forsyth ML, Welch AJ (1977) X-Ray crystallographic and theoretical studies on ‘slipped’ metallacarboranes. J Chem Soc Chem Commun 1977:605–607Google Scholar
  86. 86.
    Mingos DMP, Forsyth ML, Welch AJ (1978) Molecular and crystal structure of 3,3-bis(triethylphosphine)-1,2-di-carba-3-platinadodecaborane(11), and molecular-orbital analysis of the ‘slip’ distortion in carbametallaboranes. J Chem Soc Dalton Trans 1978:1363–1374CrossRefGoogle Scholar
  87. 87.
    Bould J, Barrett SA, Barton L, Rath NP, Kennedy JD (1998) Macropolyhedral boron-containing cluster chemistry. Isolation and characterisation of the 27-vertex contiguous triple-cluster species [(PMe2Ph)2PtB26H26(PMe2Ph)]. Inorg Chem Commun 1:365–367CrossRefGoogle Scholar
  88. 88.
    Bullen NJ (2009) New aspects of monocarbaborane chemistry. Thesis, University of Leeds, LeedsGoogle Scholar
  89. 89.
    Lipscomb WN, Massa L (1992) Examples of large closo boron hydride analogs of carbon fullerenes. Inorg Chem 31:2297–2299CrossRefGoogle Scholar
  90. 90.
    See, for example: Boustani I, Rubio A, Alonso JA (2000) Ab initio study of boron hydride spheres. In: Davidson M, Hughes AK, Marder TB, Wade K (eds) Contemporary boron chemistry, Royal Society of Chemistry, Cambridge, pp 493–496. ISBN 0-85404-835-09Google Scholar
  91. 91.
    Bould J, Londesborough MGS, Ormsby DL, MacBride JAH, Wade K, Kilner CA, Clegg W, Teat SJ, Thornton-Pett M, Greatrex R, Kennedy JD (2002) Macropolyhedral boron-containing cluster chemistry. Models for intermediates en route to globular and discoidal megaloborane assemblies. Structures of [nido-B10H12(nido-B5H8)2] and [(CH2CH2C5H4N)-arachno-B10H10(NC5H4-closo-C2B10H11)] as determined by synchrotron X-ray diffraction analysis. J Organomet Chem 657:256–261Google Scholar
  92. 92.
    Jemmis ED, Balakrishnarajam MM (2001) Polyhedral boranes and elemntal boron: direct structural relations and diverse electronic requirements. J Am Chem Soc 123:4324–4330CrossRefGoogle Scholar
  93. 93.
    Prasad DLVK, Jemmis ED (2008) Stuffing improves the stability of fullerenelike boron clusters. Phys Rev Lett 100:1665504–1665504CrossRefGoogle Scholar
  94. 94.
    See, for example: Lv J, Wang Y, Zhu L, Ma Y (2014) B38: an all-boron fullerene analogue. Nanoscale 6:11692–11696Google Scholar
  95. 95.
    Huang W, Sergeeva AP, Zhai H-J, Averkiev BB, Wang L-S, Boldyrev AI (2010) A concentric planar doubly π-aromatic B19 cluster. Nat Chem 2:202–206CrossRefGoogle Scholar
  96. 96.
    See, for example: Buckyball boron, in Chemistry World, 2014 (August), page 6Google Scholar
  97. 97.
    Bould J, Dörfler U, Clegg W, Teat SJ, Thornton-Pett M, Kennedy JD (2001) Triple linking of the decaboranyl cluster. Structure of [(SMe2)2B10H10(B10H13)2] as determined by synchrotron X-ray diffraction analysis. J Chem Soc Chem Commun 2001:1788–1789CrossRefGoogle Scholar
  98. 98.
    Huffman JC, Moody DC, Schaeffer R (1976) Boranes. XLV. Crystal and molecular structure, improved synthesis, and reactions of tridecaborane(19). Inorg Chem 15:227–232CrossRefGoogle Scholar
  99. 99.
    Brewer CT, Swisher RG, Sinn E, Grimes RN (1985) Metal-promoted fusion of B6H9 . Directed synthesis and structural characterization of dodecaborane(16), B12H16. J Am Chem Soc 107:3558–3564CrossRefGoogle Scholar
  100. 100.
    Maynard RB, Grimes RN (1982) Oxidative fusion of carborane ligands in iron and cobalt complexes: a systematic study. J Am Chem Soc 104:5983–5986CrossRefGoogle Scholar
  101. 101.
    Carr MJ, Franken A, Kilner CA, Kennedy JD (2004) Macropolyhedral boron-containing cluster chemistry. Cluster assembly about a molybdenum centre. Formation of the nineteen-vertex [(CO)2MoB16H15C2Ph] anion. Dalton Trans (Dalton Commun, Hot Paper) 2004:2612–2613Google Scholar
  102. 102.
    Grimes RN (2011) Carborane chemistry, 2nd edn. Academic/Elsevier, Amsterdam. ISBN 978-0-12-374170-7Google Scholar
  103. 103.
    Jelínek T, Kennedy JD, Štíbr B, Thornton-Pett M (1995) Macropolyhedral boron-containing cluster chemistry. The eighteen-vertex monocarbaborane [(Me3CNH2)CB17H19(CN)]. J Chem Soc Chem Commun 1995:2407–2408CrossRefGoogle Scholar
  104. 104.
    Jelínek T, Císařová I, Štíbr B, Kennedy JD (2007) Macropolyhedral boron-containing cluster chemistry. Synthesis of the nineteen vertex monocarbaborane [9-(terBuNH2)-(anti)-{9-CB18H20}] by direct carbon-atom Aufbau. Dalton Trans (Dalton Commun) 2007:4766–4768Google Scholar
  105. 105.
    Plešek J, Heřmánek S, Štíbr B, Hanousek F (1967) Chemistry of Boranes. VII. A new synthesis of borane B18H22; an application of three-center bond theory on the interpretation of reaction mechanisms. Collect Czech Chem Commun 32:1095–1103CrossRefGoogle Scholar
  106. 106.
    Dobson J, Keller PC, Schaeffer R (1968) Boranes. XXIII. Isononaborane-15. Inorg Chem 7:399–402CrossRefGoogle Scholar
  107. 107.
    Li Y, Sneddon LG (2006) Improved synthetic route to n-B18H22. Inorg Chem 45:470–471CrossRefGoogle Scholar
  108. 108.
    Beckett MA, Crook JE, Greenwood NN, Kennedy JD (1986) Synthesis, molecular structures, and n.m.r. properties of [(PMe2Ph)PtB16H18(PMe2Ph)] and [(PMe2Ph)4Pt3B14H16], and a discussion of the bonding at platinum in these macropolyhedral platinaborane clusters. J Chem Soc Dalton Trans 1986:1879–1893CrossRefGoogle Scholar
  109. 109.
    Beckett MA, Greenwood NN, Kennedy JD, Salter PA, Thornton-Pett M (1986) Identification and molecular structure of the eighteen-vertex macropolyhedral diplatinaoctadecaborane [(PMe2Ph)2Pt2B16H15(C6H4Me)(PMe2Ph)]. J Chem Soc Chem Commun 1986:556–557CrossRefGoogle Scholar
  110. 110.
    Jelínek T, Kennedy JD, Štíbr B, Thornton-Pett M (1995) Macropolyhedral boron-containing cluster chemistry. An interesting nineteen-vertex oxaborane anion, [OB18H21]¯. J Chem Soc Chem Commun 1995:1665–1666CrossRefGoogle Scholar
  111. 111.
    Ouassas A, R’Kha C, Mongeot H, Frange B (1991) Reaction of B11H14NR4 (R = Et, Bu) with M2O3 (M = As, Sb, Bi) in biphasic systems. Inorg Chim Acta 180:257–261CrossRefGoogle Scholar
  112. 112.
    Ouassas A, Fenet B, Mongeot H, Frange B (1994) The first oxaborane species: 12-vertex-28e-nido-B11H11O. In: Kabalka G (ed) Current topics in the chemistry of boron. The Royal Society of Chemistry, Cambridge, pp 363–366. ISBN 0-85186-535-6Google Scholar
  113. 113.
    Ouassas A, Fenet B, Mongeot H, Frange B, Gautheron B, Barday E (1995) Oxygen in an electron-deficient borane skeleton: the oxa-nido-dodecaborate anion [OB11H12]. J Chem Soc Chem Commun 1995:1663–1664CrossRefGoogle Scholar
  114. 114.
    Frange B, Kennedy JD (1996) Polyhedral oxaborane chemistry. Some comparative 11B NMR shielding patterns within the twelve-vertex nido-type geometry. Main Group Met Chem 19:175–181CrossRefGoogle Scholar
  115. 115.
    Serra C, Ouassas A, Boutalib A, Barday E, Gautheron B, Hanquet B, Frange B (1997) New results about the oxaborane anion OB11H12 . Main Group Met Chem 20:247–254Google Scholar
  116. 116.
    Fontaine XLR, Fowkes H, Greenwood NN, Kennedy JD, Thornton-Pett M (1985) An unusual open twelve-vertex oxametallaborane cluster compound: synthesis and X-ray structural characterisation of [(C5Me5)RhB10OH9Cl(PMe2Ph)]. J Chem Soc Chem Commun 1985:1722–1723CrossRefGoogle Scholar
  117. 117.
    Ditzel EJ, Fontaine XLR, Fowkes H, Greenwood NN, Kennedy JD, MacKinnon P, Zhu S, Thornton-Pett M (1990) Oxarhodaborane chemistry. The formation of [(C5Me5)RhOB10H10-(NEt3)] and [(C5Me5)RhB9H12]2O from [(C5Me5)RhB10H13Cl]. J Chem Soc Chem Commun 1990:1692–1694CrossRefGoogle Scholar
  118. 118.
    Micciche RP, Brigugliio JJ, Sneddon LG (1984) Metal atom synthesis of metallaboron clusters. 5. Synthesis of the first (η6-arene)metallaborane and (η6-arene)metallaoxaborane clusters. Structural characterizations of 5-[η6-C6(CH3)3H3]FeB9H13 and 2-[η6-C6(CH3)3H3]Fe-6-OB8H10. Inorg Chem 23:3992–3999CrossRefGoogle Scholar
  119. 119.
    Kim Y-H, Brownless A, Cooke PA, Greatrex R, Kennedy JD, Thornton-Pett M (1998) Polyhedral oxaplatinaborane chemistry. Characterisation of [9,9-(PMe2Ph)2-arachno-9,6-PtOB8H10] and its metallaborane non-oxa cognate [6,6-(PMe2Ph)2-arachno-6-PtB9H11-9-(PMe2Ph)]. Inorg Chem Commun 1:19–22Google Scholar
  120. 120.
    Bould J, Bown M, Kennedy JD (2005) Polyhedral oxaruthenaborane chemistry. Characterisation of a [(η6-C6Me6)RuOB9H13] species of arachno eleven-vertex cluster character. Collect Czech Chem Commun 70:410–429CrossRefGoogle Scholar
  121. 121.
    Yang X, Jiao H, Schleyer PR (1997) Structures of the 12-vertex oxa- and thia-nido-dodecaborates and B13H13 2− : a theoretical DFT/GIAO/NMR investigation. Inorg Chem 36:4897–4899Google Scholar
  122. 122.
    Kaur P, Kennedy JD, Thornton-Pett M, Jelínek T, Štíbr B (1996) Macropolyhedral boron-containing cluster chemistry. Syn and anti [(C5Me5)2Rh2S2B15H14(OH)]; an interesting nineteen-vertex isomeric pair. J Chem Soc Dalton Trans 1996:1775–1777CrossRefGoogle Scholar
  123. 123.
    Kaur P, Brownless A, Perera SD, Cooke PA, Jelínek T, Kennedy JD, Thornton-Pett M, Štíbr B (1998) Macropolyhedral boron-containing cluster chemistry. Reaction of [PtMe2(PMe2Ph)2] with [9,9′-S2B16H16] to give the eighteen-vertex dithiaplatinaborane [(PMe2Ph)2PtS2B15H14(NHCOMe)]: an entry into macropolyhedral metallaheteroborane chemistry. J Organomet Chem 557:181–185CrossRefGoogle Scholar
  124. 124.
    Carr MJ, Londesborough MGS, Bould J, Císařová I, Kennedy JD (2005) Macropolyhedral boron-containing cluster chemistry. A metallathiaborane from S2B17H17. Isolation and characterisation of [(PMe2Ph)2PtS2B16H16]. A neo-arachno ten-vertex cluster shape, and the constitution of the [arachno-B10H15] anion. Collect Czech Chem Commun 70:430–440CrossRefGoogle Scholar
  125. 125.
    Carr MJ, Londesborough MGS, Hamilton McLeod AR, Kennedy JD (2006) Macropolyhedral boron-containing cluster chemistry. Metallathiaboranes from S2B17H17: isolation and characterisation of [(η6-MeC6H4 isoPr)RuS2B16H16] and [(η6-MeC6H4 isoPr)RuS2B15H15]. Dalton Trans 2006:3624–3626CrossRefGoogle Scholar
  126. 126.
    Shea SL, McGrath T, Jelínek T, Štíbr B, Thornton-Pett M, Kennedy JD (1998) Metallaborane reaction chemistry. Macropolyhedral metallaheteroborane synthesis by direct hetero-atom insertion. Formation of the twenty-vertex [(η5-C5Me5)IrB18H19S] anion from nineteen-vertex syn-[(η5-C5Me5)IrB18H20]. Inorg Chem Comm 1:97–100CrossRefGoogle Scholar
  127. 127.
    Londesborough MGS, Kilner CA, Thornton-Pett M, Kennedy JD (2002) Macropolyhedral boron-containing cluster chemistry. A novel triple-cluster structural motif. Isolation and characterization of contiguous twenty-vertex [(PPh3)4ClPd4B16H17(PPh3)2]. J Organomet Chem 657:262–266CrossRefGoogle Scholar
  128. 128.
    Barton L, Bould J, Kennedy JD, Rath NP (1996) Macropolyhedral boron-containing cluster chemistry. The isolation and characterisation of the eighteen-vertex nido-5′-iridaoctaborano-(3′,8′:1,2)-closo-4-iridadodecaborane [(CO)(PMe3)2IrB16H14Ir(CO)(PMe3)2]. J Chem Soc Dalton Trans 1996:3145–3149CrossRefGoogle Scholar
  129. 129.
    Londesborough MGS, MacLean EJ, Teat SJ, Thornton-Pett M, Kennedy JD (2005) Macropolyhedral boron-containing cluster chemistry. Synchrotron X-ray structural analysis of [(PMe2Ph)2Pd2B16H22(PMe2Ph)2] and [(PMe2Ph)3Pt2B16H20(PMe2Ph)]: Models of intermediates to more condensed metallaboranes from the [(PMe2Ph)2PtB8H12] thermolysis system. Chem Commun (‘Hot Paper’) 2005:1584–1586CrossRefGoogle Scholar
  130. 130.
    Londesborough MGS, MacLean EJ, Teat SJ Bould J, Kilner CA, Thornton-Pett M, Kennedy JD (2003) Macropolyhedral boron-containing cluster chemistry. Pointers towards the mechanism of homofusions of nine-vertex arachno metallaboranes. In: Bubnov Y (ed) Boron chemistry at the beginning of the 21st century. Editorial URSS, Moscow, pp 248–254. ISBN 5-9519-0019-0Google Scholar
  131. 131.
    Bould J, Oro LA, Macías R, Kennedy JD, Londesborough MGS (2011) A DFT and crystallographic reinvestigation of the [L2RuC2B7H9] and [L3RuC2B7H9] ‘hypercloso’ and closo systems. Polyhedron 30:2140–2145CrossRefGoogle Scholar
  132. 132.
    Ormsby DL, Greatrex R, Štíbr B, Kennedy JD (2000) Bond rotamers and calculated 11B NMR chemical shifts in boron-containing cluster chemistry. Some effects in the nido-{7,8,10-PC2B8} system. J Organomet Chem 614/615:61–65; with erratum (2002) J Organomet Chem 657:279Google Scholar
  133. 133.
    Ditzel EJ, Fontaine XLR, Greenwood NN, Kennedy JD, Thornton-Pett M (1989) Direct evidence for N → B π-donation into a polyhedral borane cluster. J Chem Soc Chem Commun 1989:1115–1116CrossRefGoogle Scholar
  134. 134.
    Roth M, Meyer F, Paetzold P (1997) Opening of closed azadecaboranes RNB9H9 by Amines. Collect Czech Chem Commun 62:1299–1309CrossRefGoogle Scholar
  135. 135.
    Kennedy JD, Štíbr B, Jelínek T, Fontaine XLR, Thornton-Pett M (1993) Eleven-vertex polyhedral dicarbaplatinaborane chemistry. Aspects of the chemistry of some closo structured {1,2,3-PtC2B8} species and some related compounds. Collect Czech Chem Commun 58:2090–2120CrossRefGoogle Scholar
  136. 136.
    Kim J-H, Lamrani M, Hwang J-W, Do Y-K (1997) First tetrathiolate-bridged dinuclear molybdacarbaboranes: scission and formation of the C–C cluster bond during oxidation processes. J Chem Soc Chem Commun 1997:1761Google Scholar
  137. 137.
    Lipscomb WN (1966) Framework rearrangement in boranes and carboranes. Science 153:373–378CrossRefGoogle Scholar
  138. 138.
    See, for example: Brown CA, McKee ML (2006) Rearrangements in icosahedral boranes and carboranes revisited. J Mol Model 12. doi: 10.1007/s00894-006-0111-5
  139. 139.
    Bould J, McInnes YM, Carr MJ, Kennedy JD (2004) Metallaborane reaction chemistry. Part 9. A facile and reversible dioxygen capture by a B-frame-supported bimetallic: structure of [(PMe2Ph)4(O2)Pt2B10H10]. Chem Commun 2004:2380–2381CrossRefGoogle Scholar
  140. 140.
    Bould J, Kilner CA, Kennedy JD (2005) Metallaborane Reaction Chemistry. Part 11. The capture of dioxygen, carbon monoxide and sulphur dioxide by [(PMe2Ph)4Pt2B10H10]. Dalton Trans 2005:1574–1582CrossRefGoogle Scholar
  141. 141.
    Bould J, Kennedy JD (2008) Metallaborane reaction chemistry. Part 13. A predicted and found tailored facile and reversible capture of SO2 by a B-frame-supported bimetallic: structures of [(PMe2Ph)2PtPd(phen)B10H10] and [(PMe2Ph)2Pt(SO2)Pd(phen)B10H10]. Chem Commun 2008:2447–2449CrossRefGoogle Scholar
  142. 142.
    Londesborough MGS, Hnyk D, Bould J, Serrano-Andrés L, Sauri V, Oliva JM, Kubát P, Polívka T, Lang K (2012) Distinct photophysics of the isomers of B18H22 explained. Inorg Chem 51:1471–1479CrossRefGoogle Scholar
  143. 143.
    Sauri V, Oliva JM, Hnyk D, Bould J, Braborec J, Merchán M, Kubát P, Císařová I, Lang K, Londesborough MGS (2013) Tuning the photophysical properties of anti-B18H22: efficient intersystem crossing between excited singlet and triplet states in new 4,4′-(HS)2-anti-B18H20. Inorg Chem 52:9266–9274CrossRefGoogle Scholar
  144. 144.
    Cerdán L, Braborec J, Garcia-Moreno I, Costela A, Londesborough MGS (2015) A borane laser. Nature Commun 6:5958–5964Google Scholar
  145. 145.
    Lipscomb WN (1980) Examples of possible polymeric borane structures. Inorg Chem 19:1415–1416CrossRefGoogle Scholar
  146. 146.
    Oliva JM, Rué J, Hnyk D, Kennedy JD, Rosenfeld VR (2013) Borane polyhedra as building blocks for unknown but potentially isolatable new molecules – Extensions based on computations of the known B18H22 isomers. Croat Chem Acta (D J Klein 70th Birthday Edition) 86:485–494CrossRefGoogle Scholar
  147. 147.
    Hnyk D, Holub J, Jelinek T, Macháček J, Londesborough MGS (2010) Revisiting B20H16 by means of a joint computational/experimental NMR approach. Collect Czech Chem Commun (B Štíbr 70th Birthday Edition) 75:1115–1123CrossRefGoogle Scholar
  148. 148.
    Bould J, Hnyk D, Kennedy JD, Macháček J, Oliva JM (2015) Could linear megaloboranes B(8n+4)H(4n+8) exist? Ongoing workGoogle Scholar
  149. 149.
    Friedman LB, Dobrott RD, Lipscomb WN (1963) Preparation and structure of a new boron hydride, B20H16. J Am Chem Soc 85:3505–3505CrossRefGoogle Scholar
  150. 150.
    Miller NE, Muetterties EL (1963) A new boron hydride, B20H16. J Am Chem Soc 85:3506–3506CrossRefGoogle Scholar
  151. 151.
    Miller NE, Forstner JA, Muetterties EL (1964) Chemistry of boranes. XXI. Icosaborane-16. Inorg Chem 3:1690–1694CrossRefGoogle Scholar
  152. 152.
    Greenwood NN, Kennedy JD, Taylorson D (1978) Mass-spectrometric evidence for icosaborane(26). J Phys Chem 82:623–625CrossRefGoogle Scholar
  153. 153.
    Dobrott RD, Friedman LB, Lipscomb WN (1964) Molecular and crystal structure of B20H16. J Chem Phys 40:866–872CrossRefGoogle Scholar
  154. 154.
    Kaur P, Perera SD, Jelínek T, Štíbr B, Kennedy JD, Clegg W, Thornton-Pett M (1997) Macropolyhedral boron-containing cluster chemistry. Isolation and characterization of the twenty-one-vertex rhenaborane [(PMe2Ph)3HReB20H15Ph(PHMe3)]. Chem Commun 1997:217–218CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Chemistry of the University of LeedsLeedsEngland, UK
  2. 2.Institute of Inorganic Chemistry of the Academy of Sciences of the Czech RepublicHusinec-ŘežThe Czech Republic

Personalised recommendations