Advertisement

Boron pp 97-119 | Cite as

Quantum Chemistry of Excited States in Polyhedral Boranes

  • Josep M. OlivaEmail author
  • Antonio Francés-Monerris
  • Daniel Roca-Sanjuán
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 20)

Abstract

In this Chapter we describe the electronic structure of ground states and excited states of the two isomers of octadecaborane (22), anti- and syn-B18H22, and the new derivative of anti-B18H22, the polyhedral substituted borane 4,4′-(HS)2-anti-B18H20. A theoretical interpretation is given on the fluorescence of the anti-B18H22 isomer, and the non-radiative decay of the syn-B18H22 isomer, an unsolved problem since 1962. For the new derivative of anti-B18H22, substitution of hydrogen atoms in positions 4 and 4′ by SH groups allows the tuning of the photophysical properties in 4,4′-(HS)2-anti-B18H20, facilitating intersystem crossing from the excited singlet state to the triplet state.

Keywords

Excited State Triplet State Conical Intersection Singlet Excited State Full Configuration Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Thomas Schmalz (Texas A&M University at Galveston, USA) for reading the manuscript. This research was supported by Projects CTQ2014-58624-P of the Spanish MEC/FEDER, GV2015-057 of the Generalitat Valenciana, and i-COOP-2013-B20040 from the Spanish National Research Council (CSIC). D.R.-S. thanks the “Juan de la Cierva” program of the Spanish MINECO (Ref. JCI-2012-13431). A.F.-M. thanks BES-2011-048326 FPI grant (MINECO).

References

  1. 1.
    Schrödinger E (1926) Quantisierung als Eigenwertproblem. Ann Phys (Berlin) 384:361–376CrossRefGoogle Scholar
  2. 2.
    Schrödinger E (1982) Collected papers on wave mechanics, 3rd edn. Chelsea Publication Company, New YorkGoogle Scholar
  3. 3.
    Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part I – Theory and methods. Proc Cambridge Phil Soc 24:89–110CrossRefGoogle Scholar
  4. 4.
    Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part II – Results and discussion. Proc Cambridge Phil Soc 24:111–132CrossRefGoogle Scholar
  5. 5.
    Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part III – Term values and intensities. Proc Cambridge Phil Soc 24:426–437CrossRefGoogle Scholar
  6. 6.
    Hartree DR (1929) The wave mechanics of an atom with a non-coulomb central field. Part IV – Further results relating to terms of the optical spectrum. Proc Cambridge Phil Soc 25:310–314CrossRefGoogle Scholar
  7. 7.
    Fock V (1930) Nähenungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z Phys 61:126–148CrossRefGoogle Scholar
  8. 8.
    Fock V (1930) “Selfconsistent field” mit Austausch für Natrium. Z Phys 62:795–805CrossRefGoogle Scholar
  9. 9.
    Slater JC (1960) Quantum theory of atomic structure. McGraw-Hill, New YorkGoogle Scholar
  10. 10.
    Roothaan CCJ (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69–89CrossRefGoogle Scholar
  11. 11.
    Hall GG (1951) The molecular orbital theory of chemical valency. VIII. A method of calculating ionization potentials. Proc Roy Soc A205:541–552CrossRefGoogle Scholar
  12. 12.
    Pople JA, Nesbet RK (1954) Self‐consistent orbitals for radicals. J Chem Phys 22:571–572CrossRefGoogle Scholar
  13. 13.
    Roothaan CCJ (1960) Self-consistent field theory for open shells of electronic systems. Rev Mod Phys 32:179–185CrossRefGoogle Scholar
  14. 14.
    Heitler W, London F (1927) Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Z Phys 44:455–472CrossRefGoogle Scholar
  15. 15.
    Coulson CA, Fischer I (1949) Notes on the molecular orbital treatment of the hydrogen molecule. Phil Mag 40:386–393CrossRefGoogle Scholar
  16. 16.
    Pauling L (1960) The nature of the chemical bond. Cornell University Press, IthacaGoogle Scholar
  17. 17.
    van Lenthe JH, Balint-Kurti GG (1983) The valence bond self-consistent field (VBSCF) method. J Chem Phys 78:5699–5713CrossRefGoogle Scholar
  18. 18.
    Gerratt J, Cooper DL, Karadakov PB, Raimondi M (1997) Modern valence bond theory. Chem Soc Rev 26:87–100CrossRefGoogle Scholar
  19. 19.
    Shaik S, Hiberty PC (2004) Valence bond theory, its history, fundamentals, and applications. A primer. Rev Comput Chem 20:1–100Google Scholar
  20. 20.
    Čížek J (1966) On the correlation problem in atomic and molecular systems. calculation of wavefunction components in Ursell‐type expansion using quantum‐field theoretical methods. J Chem Phys 45:4256–4266CrossRefGoogle Scholar
  21. 21.
    Čížek J (1966) On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv Chem Phys 14:35–89Google Scholar
  22. 22.
    Bartlett RJ (1981) Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu Rev Phys Chem 32:359–451CrossRefGoogle Scholar
  23. 23.
    Paldus J (1981) Diagrammatic methods for many-Fermion systems (Lecture Notes ed.). University of Nijmegen, Njimegen, The NetherlandsGoogle Scholar
  24. 24.
    Paldus J (2005) The beginnings of coupled-cluster theory: An eyewitness account. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier B.V, Amsterdam, pp 115–147Google Scholar
  25. 25.
    Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics. Cambridge Molecular Science, CambridgeCrossRefGoogle Scholar
  26. 26.
    Sherrill CD, Schaefer III HF (1999) The configuration interaction method: advances in highly correlated approaches. In: Löwdin PO (ed) Advances in Quantum Chemistry, vol 34. Academic, San Diego, pp 143–269Google Scholar
  27. 27.
    Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRefGoogle Scholar
  28. 28.
    Bartlett RJ, Silver DM (1976) Many‐body perturbation theory applied to electron pair correlation energies. II. Closed‐shell second‐row diatomic hydrides. J Chem Phys 64:4578–4586CrossRefGoogle Scholar
  29. 29.
    Bartlett RJ, Shavitt I (1977) Comparison of high-order many-body perturbation theory and configuration interaction for H2O. Chem Phys Lett 50:190–198CrossRefGoogle Scholar
  30. 30.
    Krishnan R, Frisch MJ, Pople JA (1980) Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J Chem Phys 72:4244–4245CrossRefGoogle Scholar
  31. 31.
    Wilson S (1984) Electron correlation in molecules. Clarendon, OxfordGoogle Scholar
  32. 32.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  33. 33.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg, JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant, JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian-09. Gaussian, Inc., Wallingford CTGoogle Scholar
  35. 35.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  36. 36.
    Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (eds) (2006) Time-dependent density functional theory. Springer, Berlin HeidelbergGoogle Scholar
  37. 37.
    Klessinger M, Michl J (1995) Excited states and photochemistry of organic molecules. Wiley-VCH, New YorkGoogle Scholar
  38. 38.
    Ramamurthy V, Schanze KS (1998) Organic and inorganic photochemistry. Marcel Dekker, New YorkGoogle Scholar
  39. 39.
    Armstrong DR, Perkins PG, Stewart JJP (1973) Calculation of the electronic structure of boranes by the self-consistent molecular orbital method. Part III. Excited states of cage species. J Chem Soc Dalton Trans 21:2277–2280CrossRefGoogle Scholar
  40. 40.
    Kunkely H, Vogler A (2005) Luminescence of silver 7, 8, 9, 10, 11, 12-hexabromo-closo-1-carbododecaborate. Inorg Chem Commun 8:992–993CrossRefGoogle Scholar
  41. 41.
    Kunkely H, Vogler A (2007) Excited state properties of Tl2B12H12. Metal-centered photoluminescence. Inor Chim Acta 360:679–680CrossRefGoogle Scholar
  42. 42.
    Kwon S, Wee K, Cho Y-J et al (2014) Carborane dyads for photoinduced electron transfer: Photophysical studies on carbazole and phenyl-o-carborane molecular assemblies. Chem Eur J 20:5953–5960CrossRefGoogle Scholar
  43. 43.
    Weber L, Kahlert J, Brockhinke R et al (2012) Luminescence properties of C-diazaborolyl-ortho-carboranes as donor-acceptor systems. Chem Eur J 18:8347–8357CrossRefGoogle Scholar
  44. 44.
    Wee K-R, Cho Y-J, Song J-K et al (2013) Multiple photoluminescence from 1, 2-dinaphthyl-ortho-carborane. Angew Chem Int Ed 52:9682–9685CrossRefGoogle Scholar
  45. 45.
    Base K, Grinstaff MW (1998) Generation of an unprecedented excited state oxidant in a coordinately unsaturated platinum complex. Inorg Chem 37:1432–1433CrossRefGoogle Scholar
  46. 46.
    Hong E, Yang H, Kim Y, Jeoung SC, Do Y (2001) Mechano- and electroluminescence of a dissymmetric Hafnium carborane complex. Adv Mater 13:1094–1096CrossRefGoogle Scholar
  47. 47.
    Calhorda MJ, Crespo O, Gimeno MC, Jones PG, Laguna A, López-de-Luzuriaga JM, Perez JL, Ramon MA, Veiros LF (2000) Synthesis, structure, luminescence and theoretical studies of tetranuclear Gold clusters with phosphinocarborane ligands. Inorg Chem 39:4280–4285CrossRefGoogle Scholar
  48. 48.
    Crespo O, Gimeno MC, Jones PG, Laguna A, López-de-Luzuriaga JM, Monge M, Perez JL, Ramon MA (2003) Luminescent nido-carborane-diphosphine anions [(PR2)2C2B9H10] (R = Ph, iPr). Modification of their luminescence properties upon formation of three-coordinate Gold(I) complexes. Inorg Chem 42:2061–2068CrossRefGoogle Scholar
  49. 49.
    Bae H-J, Chung J, Kim H et al (2014) Deep red phosphorescence of cyclometalated iridium complexes by o-carborane substitution. Inorg Chem 53:128–138CrossRefGoogle Scholar
  50. 50.
    Oliva JM, Serrano-Andrés L (2006) A computational study of the lowest singlet and triplet states of neutral and dianionic 1,2-substituted icosahedral and octahedral o-carboranes. J Comput Chem 27:524–535CrossRefGoogle Scholar
  51. 51.
    Serrano-Andrés L, Oliva JM (2006) Photochemical window mechanism for controlled atom release in carborane endohedral boxes: theoretical evidence. Chem Phys Lett 432:235–239CrossRefGoogle Scholar
  52. 52.
    Serrano-Andrés L, Klein DJ, Schleyer PR, Oliva JM (2008) What electronic structures and geometries of carborane mono- and ortho-, meta-, and para-diradicals are preferred? J Chem Theory Comput 4:1338–1347CrossRefGoogle Scholar
  53. 53.
    Oliva JM, Klein DJ, Schleyer PR, Serrano-Andrés L (2009) Design of carborane molecular architectures with electronic structure computations: From endohedral and polyradical systems to multidimensional networks. Pure Appl Chem 81:719–729CrossRefGoogle Scholar
  54. 54.
    Oliva JM, Serrano-Andrés L, Havlas Z, Michl J (2009) On the electronic structure of a dianion, a radical anion, and a neutral biradical (HB)11C-C≡C-C(BH)11 carborane dimer. J Mol Struct – THEOCHEM 912:13–20CrossRefGoogle Scholar
  55. 55.
    Crespo O, Gimeno MC, Laguna A, Ospino I, Aullón G, Oliva JM (2009) Organometallic gold complexes of carborane. Theoretical comparative analysis of ortho, meta and para derivatives and luminescence studies. Dalton Trans 19:3807–3813CrossRefGoogle Scholar
  56. 56.
    Oliva JM (2012) Energy landscapes in boron chemistry: Bottom-top approach towards design of novel molecular architectures. Adv Quantum Chem 64:105–119CrossRefGoogle Scholar
  57. 57.
    Oliva JM, Alcoba DR, Lain L, Torre A (2013) Electronic structure studies of diradicals derived from closo-carboranes. Theor Chem Acc 132(1–6):1329CrossRefGoogle Scholar
  58. 58.
    Oliva JM, Alcoba DR, Oña OB, Torre A, Lain L, Michl J (2015) Toward (car)borane-based molecular magnets. Theor Chem Acc 134:9. 8 pGoogle Scholar
  59. 59.
    Londesborough MGS, Hnyk D, Bould J et al (2012) Distinct photophysics of the isomers of B18H22 explained. Inorg Chem 51:1471–1479CrossRefGoogle Scholar
  60. 60.
    Saurí V, Oliva JM, Hnyk D et al (2013) Tuning the photophysical properties of anti-B18H22: efficient intersystem crossing between excited singlet and triplet states in new 4,4′-(HS)2-anti-B18H20. Inorg Chem 52:9266–9274Google Scholar
  61. 61.
    Vicenta Saurí Peris (2013) Theoretical study of the molecular bases that control photochemical processes with biological and nanotechnological interest. PhD Thesis, Universitat de ValènciaGoogle Scholar
  62. 62.
    Cerdán L, Braborec J, Garcia-Moreno I, Costela A, Londesborough MGS (2015) A borane laser. Nature Commun 6:5958. 7 pGoogle Scholar
  63. 63.
    Hosmane NS (2011) Boron science. CRC Press, Boca RatonCrossRefGoogle Scholar
  64. 64.
    Sibaev IB, Bregadze VI (2009) Polyhedral boron hydrides in use: current status and perspectives. Nova Science, New YorkGoogle Scholar
  65. 65.
    Sibaev IB, Bregadze VI (2009) Polyhedral boranes for medical applications: current status and perspectives. Eur J Inorg Chem 1433–1450Google Scholar
  66. 66.
    Hosmane NS, Maguire JA, Zhu Y, Takagaki M (2011) Boron and gadolinium neutron capture therapy for cancer treatment. World Scientific, SingaporeGoogle Scholar
  67. 67.
    Grimes RN (2011) Carboranes, 2nd edn. Academic, LondonGoogle Scholar
  68. 68.
    Goddard WA III, Brenner DW, Lyshevski SE, Iafrate GJ (2003) Handbook of nanoscience, engineering and technology. CRC Pres, Boca RatónGoogle Scholar
  69. 69.
    Pichierri F (2007) Polyhedral heteroborane clusters for nanotechnology. In: Mansoori GA, George TF, Assoufid L, Zhang G (eds) Molecular Building Blocks for Nanotechnology. Top Appl Phys 109:256–274Google Scholar
  70. 70.
    Fanfrlík J, Přáda A, Padělková Z, Pecina A, Macháček J, Lepšík M, Holub J, Růžička A, Hnyk D, Hobza P (2014) The dominant role of chalcogen bonding in the crystal packing of 2D/3D aromatics. Angew Chem Int Ed 53:10139–10142CrossRefGoogle Scholar
  71. 71.
    Kennedy DC, Duguay DR, Tay LL, Richeson DR, Pezacki JP (2007) SERS detection and boron delivery to cancer cells using carborane labelled nanoparticles. Chem Commun 6750–6752Google Scholar
  72. 72.
    Barry NPE, Pitto-Barry A, Romero-Canelón I, Tran J, Soldevila-Barreda JJ, Hands-Portman I, Smith CJ, Kirby N, Dove AP, O’Reilly RK, Sadler PJ (2014) Precious metal carborane polymer nanoparticles: characterization of micellar formulations and anticancer activity. Faraday Discuss 175:229–240CrossRefGoogle Scholar
  73. 73.
    Serrano-Andrés L, Merchán M (2004) Spectroscopy: applications. In: Schleyer PR et al (eds) Encyclopedia of computational chemistry. Wiley, ChichesterGoogle Scholar
  74. 74.
    Serrano-Andrés L, Merchán M (2008) Photostability and photoreactivity in biomolecules: Quantum chemistry of nucleic acid base monomers and dimers. In: Shukla MK, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acid: a comprehensive theoretical and experimental analysis. Chapter 16:435–472. Springer, The NetherlandsGoogle Scholar
  75. 75.
    Serrano-Andrés L, Roca-Sanjuán D, Olaso-González G (2011) Recent trends in computational photochemistry. In: Albini A (ed) Photochemistry, vol 38, Series: specialist periodical reports. Royal Society, London, pp 10–36CrossRefGoogle Scholar
  76. 76.
    González L, Escudero D, Serrano-Andrés L (2012) Progress and challenges in the calculation of electronic excited states. Chem Phys Chem 13:28–51Google Scholar
  77. 77.
    Serrano-Andrés L, Serrano-Pérez JJ (2012) Calculation of excited states: molecular photophysics and photochemistry on display. In: Handbook of computational chemistry. Springer, Berlin, pp 483–560CrossRefGoogle Scholar
  78. 78.
    Giussani A, Segarra-Martí J, Roca-Sanjuán D, Merchán M (2015) Excitation of nucleobases from a computational perspective I: Reaction paths. Top Curr Chem 355:57–98CrossRefGoogle Scholar
  79. 79.
    Roca-Sanjuán D, Fernández Galván I, Lindh R, Liu YJ (2015) Recent method developments and applications in computational photochemistry, chemiluminescence, and bioluminescence. In: Albini A (ed) Photochemistry, vol 42, Series: specialist periodical reports. Royal Society, London, pp 11–42Google Scholar
  80. 80.
    Teller E (1973) The crossing of potential surfaces. J Phys Chem 41:109–116CrossRefGoogle Scholar
  81. 81.
    Herzberg G, Longuet-Higgins LC (1963) Intersection of potential energy surfaces in polyatomic molecules. Faraday Discuss 35:77–82CrossRefGoogle Scholar
  82. 82.
    Robb MA, Bernardi F, Olivucci M (1996) Conical intersections as a mechanistic feature of organic-photochemistry. Pure Appl Chem 67:783–789Google Scholar
  83. 83.
    Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: Electronic structure, dynamics, and spectroscopy. World Scientific, SingaporeGoogle Scholar
  84. 84.
    Bearpark MJ, Robb MA (2007) Conical intersection species as reactive intermediates. Wiley, HobokenCrossRefGoogle Scholar
  85. 85.
    Garavelli M, Bernardi F, Cembran A (2005) In: Olivucci M (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, p 191Google Scholar
  86. 86.
    Michl J (2005) Foreword. In: Olivucci M (ed) Computational photochemistry. Elsevier, Amsterdam, p ixGoogle Scholar
  87. 87.
    Serrano-Andrés L, Merchán M (2005) Quantum chemistry of the excited state. J Mol Struc – Theochem 729:109–118CrossRefGoogle Scholar
  88. 88.
    Roos BO, Andersson K, Fülscher MP, Malmqvist PA, Serrano-Andrés L, Pierloot K, Merchán M (1996). New methods in computational quantum mechanics. In: Prigogine I, Rice S (eds) Multiconfigurational perturbation theory – applications in electronic spectroscopy. Adv Chem Phys 93:219–331. John Wiley, New YorkGoogle Scholar
  89. 89.
    Merchán M, Serrano-Andrés L (2005) Ab initio methods for excited states. In: Olivucci M (ed) Computational photochemistry. Elsevier, AmsterdamGoogle Scholar
  90. 90.
    Gozem S, Krylov AI, Olivucci M (2013) Conical intersection and potential energy surface features of a model retinal chromophore: Comparison of EOM-CC and multireference methods. J Chem Theory Comput 9:284–292CrossRefGoogle Scholar
  91. 91.
    Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488CrossRefGoogle Scholar
  92. 92.
    Andersson K, Malmqvist PÅ, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226CrossRefGoogle Scholar
  93. 93.
    Roca-Sanjuán D, Aquilante F, Lindh R (2012) Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry. Wiley Interdisciplinary Reviews. Comput Mol Sci 2:585–603CrossRefGoogle Scholar
  94. 94.
    Ghigo G, Roos BO, Malmqvist PÅ (2004) A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett 396:142–149CrossRefGoogle Scholar
  95. 95.
    Forsberg N, Malmqvist PÅ (1997) Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett 274:196–204CrossRefGoogle Scholar
  96. 96.
    Finley J, Malmqvist PÅ, Roos BO, Serrano-Andrés L (1998) The multi-state CASPT2 method. Chem Phys Lett 288:299–306CrossRefGoogle Scholar
  97. 97.
    Serrano-Andrés L, Merchán M, Lindh R (2005) Computation of conical intersections by using perturbation techniques. J Chem Phys 122:104107-1-10Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Josep M. Oliva
    • 1
    Email author
  • Antonio Francés-Monerris
    • 2
  • Daniel Roca-Sanjuán
    • 2
  1. 1.Instituto de Química-Física “Rocasolano” (CSIC)MadridSpain
  2. 2.Institut de Ciència MolecularUniversitat de ValènciaValènciaSpain

Personalised recommendations