Advertisement

The Non Empirical Local Self Consistent Field Method: Application to Quantum Mechanics/Molecular Mechanics (QM/MM) Modeling of Large Biomolecular Systems

  • Jean-Louis RivailEmail author
  • Antonio Monari
  • Xavier Assfeld
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 21)

Abstract

The present chapter starts with an analysis of the problems encountered when applying a mixed Quantum Mechanics/Molecular Mechanics to a large molecular system, which cannot be approached at a full quantum level of computation and a review of the possible solutions. A Non Empirical Local Self Consistent Field methodology, allowing computing at any quantum chemical level a part of a very large molecule interacting with the rest of this molecule is described in some detail. This approach is illustrated by various applications to the spectroscopic properties of various bio-macromolecules. Finally, and as a test case we will focus on the QM/MM modelling of spectroscopic and photophysical properties of exogenous chromophores interacting with DNA. Hence, we will show how the combination of high-level QM/MM methods with Molecular Dynamics simulations allows us to gain unprecedented insights in the process of DNA Photosensitization that is of paramount importance to understand the induction of DNA photolesions and to unravel novel anticancer therapeutic strategies.

Keywords

Freeze Orbital Localize Molecular Orbital Link Atom Classical Atom Large Molecular System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Monard G, Merz KM Jr (1999) Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems. Acc Chem Res 32:904–911CrossRefGoogle Scholar
  2. 2.
    Lin H, Truhlar DG (2007) QM/MM: what we have learned, where are we, and where do we go from here? Theor Chem Acc 117:185–199CrossRefGoogle Scholar
  3. 3.
    Senn HM, Thiel W (2009) QM/MM Methods for biomolecular systems. Angew Chem Int Ed 48:1198–1229CrossRefGoogle Scholar
  4. 4.
    Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Fragmentation methods: a route to accurate calculations on large molecular systems. Chem Rev 112:632–672CrossRefGoogle Scholar
  5. 5.
    Monari A, Rivail JL, Assfeld X (2013) Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations. Acc Chem Res 46:596–603CrossRefGoogle Scholar
  6. 6.
    Akimov AV, Prezhdo OV (2015) Large scale computation in chemistry: a bird’s eye view of a vibrant field. Chem Rev. doi: 10.1021/cr500524c
  7. 7.
    van Gunsteren WF, Berendsen HJC (1987) Groningen molecular simulation (GROMOS) library manual biomos, GroningenGoogle Scholar
  8. 8.
    Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics. The MM3 force field for hydrocarbons. J Am Chem Soc 111:8551–8566CrossRefGoogle Scholar
  9. 9.
    Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate structural and energetic properties of molecules. Comput Phys Commun 91:1–41CrossRefGoogle Scholar
  10. 10.
    MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe W, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  11. 11.
    Dang LX, Chang T-M (1997) Molecular dynamics study of water clusters, liquid and liquid-vapor interface of water with many-body potentials. J Chem Phys 106:8149–8159CrossRefGoogle Scholar
  12. 12.
    Dupuis M, Aida M, Kawashima Y, Hirao K (2002) A polarizable mixed Hamiltonian model of electronic structure for micro-solvated excited states. I Energy and gradients formulation and application to formaldehyde (1A2). J Chem Phys 117:1242–1255CrossRefGoogle Scholar
  13. 13.
    Gresh N, Andrés Cisneros G, Darden TA, Piquemal J-P (2007) Anisotropic, polarizable molecular mechanics studies of inter- and intramolecular interactions and ligand-macromolecule-complexes. A bottom-up strategy. J Chem Theory Comput 3:1960–1986CrossRefGoogle Scholar
  14. 14.
    Dixon SL, Merz KM Jr (1996) Semiempirical molecular-orbital calculations with linear system size scaling. J Chem Phys 104:6643–6649CrossRefGoogle Scholar
  15. 15.
    Daniels AD, Millam JM, Scuseria GE (1997) Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousand of atoms. J. Chem. Phys. 107:425–431CrossRefGoogle Scholar
  16. 16.
    Yang W, Lee TS (1995) A Density matrix divide-and-conquer approach for electronic structure calculations of large molecules. J Chem Phys 103:5674–5678CrossRefGoogle Scholar
  17. 17.
    Monard G, Bernal-Uruchurtu MI, van der Vaart A, Merz KM Jr, Ruiz-López MF (2005) Simulation of liquid water Using semiempirical hamiltonians and the divide and conquer approach. J Phys Chem A 109:3425–3432CrossRefGoogle Scholar
  18. 18.
    Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  19. 19.
    Carloni P, Rothlisberger U, Parrinello M (2002) The role and perspective of ab initio molecular dynamics in the study of biological systems. Acc Chem Res 35:455–464CrossRefGoogle Scholar
  20. 20.
    Garrec J, Patel C, Rothlisberger U, Dumont E (2012) Insight into intrastrand cross-link lesions of DNA from QM/MM molecular dynamics simulations. J Am Chem Soc 134:2111–2119CrossRefGoogle Scholar
  21. 21.
    Mestres J, Duran M, Bertran J (1996) Characterization of the transition state for the hydride transfer in a model of the flavoprotein reductase class of enzymes. Biorgan Chem 24:69–80CrossRefGoogle Scholar
  22. 22.
    Maseras F, Morokuma K (1995) IMOMM, a new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structure and transition states. J Comput Chem 16:1170–1179CrossRefGoogle Scholar
  23. 23.
    Singh UC, Kollman PA (1986) A combined quantum ab initio mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl exchange reaction and gas phase protonation of polyethers. J Comput Chem 7:718–730CrossRefGoogle Scholar
  24. 24.
    Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comput Chem 11:700–733CrossRefGoogle Scholar
  25. 25.
    Eurenius KP, Chatfield DC, Brooks BR (1996) Enzyme mechanisms with hybrid quantum and molecular mechanical potentials. I. Theoretical considerations. Int J Quantum Chem 60:1189–1200CrossRefGoogle Scholar
  26. 26.
    Kaminski GA, Jorgensen WL (1998) A quantum mechanical and molecular mechanical method based on CM1A charges: applications to solvent effects on organic equilibria and reactions. J Phys Chem B 102:1787–1796CrossRefGoogle Scholar
  27. 27.
    Ferré N, Olivucci M (2003) The amide bond: pitfalls and drawback of the link atom scheme. J Mol Struct (Theochem) 632:71–82CrossRefGoogle Scholar
  28. 28.
    Antes I, Thiel W (1999) Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J Phys Chem A 103:9290–9295CrossRefGoogle Scholar
  29. 29.
    Swart M (2003) AddRemove: a new link model for use in QM/MM studies. Int J Quantum Chem 91:177–183CrossRefGoogle Scholar
  30. 30.
    Das D, Eurenius KP, Billings EM, Sherwood P, Chatfield DC, Hodoscek M, Brook BR (2002) Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method. J Chem Phys 117:10534–10547CrossRefGoogle Scholar
  31. 31.
    Di Labio GA, Hurley MM, Christiansen PA (2002) Simple one-electron quantum capping potentials for use in hybrid QM/MM studies of biological molecules. J Chem Phys 116:9578–9584CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Lee T-S, Yang W (1999) A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J Chem Phys 110:46–54CrossRefGoogle Scholar
  33. 33.
    Xiao C, Zhang Y (2007) Design-atom approach for quantum mechanical/molecular mechanical covalent boundary: a design-carbon atom with five valence electrons. J Chem Phys 127:124102CrossRefGoogle Scholar
  34. 34.
    Poteau R, Ortega Y, Alary F, Ramirez Solis A, Barthelat J-C, Daudey JP (2001) Effective group potentials. 1. Method J Phys Chem A 105:198–205CrossRefGoogle Scholar
  35. 35.
    Ferenczy GG, Rivail J-L, Surján PR, Náray-Szabó G (1992) NDDO fragment self-consistent-field approximation for large electronic systems. J Comput Chem 13:830–837CrossRefGoogle Scholar
  36. 36.
    Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249CrossRefGoogle Scholar
  37. 37.
    Théry V, Rinaldi D, Rivail J-L, Maigret B, Ferenczy GG (1994) Quantum mechanical computations on very large molecular systems: the local self-consistent field method. J Comput Chem 15:269–282CrossRefGoogle Scholar
  38. 38.
    Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method J Comput Chem 10:209–220CrossRefGoogle Scholar
  39. 39.
    Monard G, Loos M, Théry V, Baka K, Rivail JL (1996) Hybrid classical quantum force field for modeling very large molecules. Int J Quantum Chem 58:153–159CrossRefGoogle Scholar
  40. 40.
    Antonczak S, Monard G, Ruiz-López MF, Rivail J-L (1998) Modeling of peptide hydrolysis by thermolysin. A semiempirical and QM/MM Study. J Am Chem Soc 120:8825–8833CrossRefGoogle Scholar
  41. 41.
    Gao G, Amara P, Alhambra C, Field MJ (1998) A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations. J Phys Chem A 102:4714–4721CrossRefGoogle Scholar
  42. 42.
    Pu J, Gao J, Truhlar DG (2004) Generalized hybrid orbital (GHO) method for combining ab initio Hartree-Fock wave functions with molecular mechanics. J Phys Chem A 108:632–650CrossRefGoogle Scholar
  43. 43.
    Pu J, Gao J, Truhlar DG (2004) Combining self-consistent-charge density-functional tight-binding (SCC-DFTB) with molecular mechanics by the generalized hybrid orbital (GHO) method. J Phys Chem A 108:5454–5463CrossRefGoogle Scholar
  44. 44.
    Pu J, Truhlar DG (2005) Redristributed charge and dipole schemes for combined quantum mechanical and molecular mechanical calculations. J Phys Chem A 109:3991–4004CrossRefGoogle Scholar
  45. 45.
    Assfeld X, Rivail J-L (1996) Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method. Chem Phys Lett 263:100–106CrossRefGoogle Scholar
  46. 46.
    Szabo A, Ostlund NS (1989) Modern quantum chemistry. Mc Graw Hill, New York, p 144Google Scholar
  47. 47.
    Moreau Y, Loos P-F, Assfeld X (2004) Solvent effects on the asymmetric Diels-Alder reaction between cyclopentadiene and (-)-menthyl acrylate revisited with the three-layer hybrid local self-consistent field/molecular mechanics/self-consistent reaction field method. Theor Chem Acc 112:228–239CrossRefGoogle Scholar
  48. 48.
    Ferré N, Assfeld X (2002) Application of the local self-consistent-field method to core-ionized and core-excited molecules, polymers, and proteins: True orthogonality between ground and excited states. J Chem Phys 117:4119–4125CrossRefGoogle Scholar
  49. 49.
    Loos PF, Assfeld X (2007) Core-ionized and core-excited states of macromolecules. Int J Quantum Chem 107:2243–2252CrossRefGoogle Scholar
  50. 50.
    Ferré N, Assfeld X, Rivail J-L (2002) Specific force field determination for the hybrid ab initio QM/MM LSCF method. J Comput Chem 23:610–624CrossRefGoogle Scholar
  51. 51.
    Fornili A, Loos P-F, Sironi M, Assfeld X (2006) Frozen core orbitals as an alternative to specific frontier bond potential in hybrid quantum mechanics/molecular mechanics methods. Chem Phys Lett 427:236–240CrossRefGoogle Scholar
  52. 52.
    Loos P-F, Fornili A, Sironi M, Assfeld X (2007) Removing extra frontier parameters in QM/MM methods: a tentative with the local Self-consistent field approach. Comput Lett 4:473–486CrossRefGoogle Scholar
  53. 53.
    Loos P-F, Assfeld X (2007) On the frontier bond location in the QM/MM description of peptides and proteins. AIP Conf Proc 963:308–315CrossRefGoogle Scholar
  54. 54.
    Ferré N, Assfeld X (2003) A new three-layer hybrid method (LSCF/MM/Madelung) devoted to the study of chemical reactivity in zeolites. Preliminary results. J Mol Struct (Theochem) 632:83–90CrossRefGoogle Scholar
  55. 55.
    Boys SF (1960) Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev Mod Phys 32:296–299CrossRefGoogle Scholar
  56. 56.
    Foster JM, Boys SF (1960) Canonical configurational interaction procedure. Rev Mod Phys 32:300–302CrossRefGoogle Scholar
  57. 57.
    Magnasco V, Perico A (1967) Uniform localization of atomic and molecular orbitals. I. J Chem Phys 47:971–981CrossRefGoogle Scholar
  58. 58.
    Weinstein H, Pauncz R (1968) Molecular orbital set determined by a localization procedure. Symp Faraday Soc 2:23–31CrossRefGoogle Scholar
  59. 59.
    Pipek J, Mezey PG (1989) A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J Chem Phys 90:4916–4926CrossRefGoogle Scholar
  60. 60.
    Fornili A, Moreau Y, Sironi M, Assfeld X (2006) On the suitability of strictly localized orbitals for hybrid QM/MM calculations. J Comput Chem 27:515–523CrossRefGoogle Scholar
  61. 61.
    Sironi M, Famulari A (2000) An orthogonal approach to determine extremely localised molecular orbitals. Theor Chem Acc 103:417–422CrossRefGoogle Scholar
  62. 62.
    Fornili A, Sironi M, Raimondi M (2003) Determination of extremely localized molecular orbitals and their application to quantum mechanics/molecular mechanics methods and to the study of intramolecular hydrogen bonding. J Mol Struct (Theochem) 632:157–172CrossRefGoogle Scholar
  63. 63.
    Genoni A, Ghitti M, Pieraccini S, Sironi M (2005) A novel extremely localized molecular orbitals based technique for the one-electron density matrix computation. Chem Phys Lett 415:256–260CrossRefGoogle Scholar
  64. 64.
    Loos PF, Assfeld X (2007) Self-consistent strictly localized orbitals. J Chem Theory Comput 3:1047–1053CrossRefGoogle Scholar
  65. 65.
    Celebi N, Ángyán JG, Dehez F, Millot C, Chipot C (2000) Distributed polarizabilities derived from induction energies: a finite perturbation approach. J. Chem. Phys. 112:2709–2717CrossRefGoogle Scholar
  66. 66.
    Dehez F, Soetens JC, Chipot C, Ángyán JG, Millot C (2000) Determination of distributed polarizabilities from a statistical analysis of induction energies. J Phys Chem A 104:1293–1303CrossRefGoogle Scholar
  67. 67.
    Dehez F, Chipot C, Millot C, Ángyán JG (2001) Fast and accurate determination of induction energies: reduction of topologically distributed polarizability models. Chem Phys Lett 338:180–188CrossRefGoogle Scholar
  68. 68.
    Thompson MA (1996) QM/MMpol: a consistent model for solute/solvent polarization. Application to the aqueous solvation and spectroscopy of formaldehyde, acetaldehyde and acetone. J Phys Chem 100:14492–14507CrossRefGoogle Scholar
  69. 69.
    Dupuis M, Kawashima Y, Hirao K (2002) A polarizable mixed Hamiltonian model of electronic structure for micro-solvated excited states. II Application to the blue shift of the H2CO 1(π ← n) excitation in water. J Chem Phys 117:1256–1268CrossRefGoogle Scholar
  70. 70.
    Xie W, Song L, Truhlar DG (2008) Gao J The variational explicit polarization potential and analytical first derivatives of energy: toward a new generation force field. J Chem Phys 128:234108CrossRefGoogle Scholar
  71. 71.
    Jacquemin D, Perpète EA, Laurent AD, Assfeld X, Adamo C (2009) Spectral properties of self-assembled squaraine-tetralactam: a theoretical assessment. Phys Chem Chem Phys 11:1258–1262CrossRefGoogle Scholar
  72. 72.
    Laurent AD, Assfeld X (2010) Effect of the enhanced cyan fluorescent proteinic framework on the UV/visible absorption spectra of some chromophores. Interdiscip Sci Comput Life Sci 2:38–47CrossRefGoogle Scholar
  73. 73.
    Monari A, Very T, Rivail J-L, Assfeld X (2012) A QM/MM study on the spinach plastocyanin: Redox properties and Absorption spectra. Comp. Theoret. Chem. 990:119–125CrossRefGoogle Scholar
  74. 74.
    Very T, Despax S, Hébraud P, Monari A, Assfeld X (2012) Spectral properties of polypyridyl Ruthenium complex intercalated in DNA: theoretical insights on the surrounding effects for [Ru(dppz)(bpy)2]2+ Phys. Chem Chem Phys 14:12496–12504CrossRefGoogle Scholar
  75. 75.
    Chantzis A, Very T, Monari A, Assfeld X (2012) Improved treatment of surrounding effects: UV/vis absorption properties of a solvated Ru(II) complex. J Chem Theory Comp 8:1536–1541CrossRefGoogle Scholar
  76. 76.
    Gattuso H, Assfeld X, Monari A (2015) Modeling DNA electronic circular dichroism by QM/MM methods and Frenkel Hamiltonian. Theor Chem Acc 134:36CrossRefGoogle Scholar
  77. 77.
    Monari A, Very T, Rivail J-L, Assfeld X (2012) Effects of mutations on the absorption spectrum of copper proteins: A QM/MM study. Theor Chem Acc 131:1221CrossRefGoogle Scholar
  78. 78.
    Etienne T, Assfeld X, Monari A (2014) QM/MM calculation of absorption spectra of complex systems: the case of human serum albumin Comp. Theoret Chem 1040–1041:360–366CrossRefGoogle Scholar
  79. 79.
    Chantzis A, Very T, Despax S, Issenhut J-T, Boeglin A, Hébraud P, Pfeffer M, Monari A, Assfeld X (2014) UV-vis absorption spectrum of a novel Ru(II) complex intercalated in DNA: [Ru(2,2′-bipy)(dppz)(2,2′-ArPy)]. J Mol Model 20:2082CrossRefGoogle Scholar
  80. 80.
    Chantzis A, Very T, Daniel C, Monari A, Assfeld X (2013) Theoretical evidence of photo-induced large transfer from DNA to intercalated ruthenium (II) organometallic complex Chem. Phys Lett 578:133–137Google Scholar
  81. 81.
    Very T, Ambrosek D, Otsuka M, Gourlauen C, Assfeld X, Monari A, Daniel C (2014) Photophysical properties of ruthenium (II) polypyridyl DNA intercalators: effects of the molecular surroundings investigated by theory. Chem Eur J 40:12901–12909CrossRefGoogle Scholar
  82. 82.
    Huix-Rottlant M, Dumont E, Ferré N, Monari A (2015) Photophysics of acetophenone interacting with DNA: why the road to photosensitization is open. Photochem Photobiol 91:323–330CrossRefGoogle Scholar
  83. 83.
    Dumont E, Monari A (2015) Interaction of palamtine with DNA: an environmentally controlled drug. J Phys Chem B 119:410–419CrossRefGoogle Scholar
  84. 84.
    Epe B (2012) DNA damage spectra induced by photosensitization Photochem. Photobiol Sci 11:98–106CrossRefGoogle Scholar
  85. 85.
    Cadet J, Wagner R (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation Cold Spring Harb. Perspect Biol 5:a12599Google Scholar
  86. 86.
    Friedman AE, Chambron JC, Sauvage J-P, Turro NJ, Barton JK (1990) Molecular light switch for DNA: Ru(bipy)2(dppz). J Am Chem Soc 112:4960CrossRefGoogle Scholar
  87. 87.
    Etienne T, Very T, Perpète EA, Monari A, Assfeld X (2013) A QM/MM study of harmane in water solution and interacting with DNA: the crucial role of dynamic effects. J Phys Chem B 117:4973–4980CrossRefGoogle Scholar
  88. 88.
    Etienne T, Gattuso H, Monari A, Assfeld X (2014) QM/MM modelling of harmane cation fluorescence spectrum in water solution and interacting with DNA Comp. Theor Chem 1040–1041:367–372CrossRefGoogle Scholar
  89. 89.
    Dumont E, Monari A (2013) Benzophenone and DNA: evidence for a double insertion mode and its spectral signature. J Phys Chem Lett 4:4119–4124CrossRefGoogle Scholar
  90. 90.
    Dumont E, Wibowo M, Roca-Sanjuan D, Garavelli M, Assfeld X, Monari A (2015) esolving the benzophenone DNA-photosensitization mechanism at QM/MM level. J Phys Chem Lett 6:576–580CrossRefGoogle Scholar
  91. 91.
    Gonzalez MM, Arnjberg J, Denofrio MP, Erra-Balsells R, Ogilby PR, Cabreizo FM (2009) One- and two-photon excitation of of b-carbline in aqueous solution: ph-dependent spectroscopy, photochemistry and photophysics. J Phys Chem A 113:6648–6656CrossRefGoogle Scholar
  92. 92.
    Paul BK, Guchait N (2011) Exploring the strength, mode, dynamics and kinetics of binding interaction of a cationic biological photosensitizers with DNA: implication on dissociation of the drug-DNA complex with detergent sequestration. J Phys Chem B 115:11938–11949CrossRefGoogle Scholar
  93. 93.
    Cuquerella MC, Lhiaubet-Vallet V, Cadet J, Miranda MA (2012) Benzophenone photosensitized DNA damage. Acc Chem Res 45:1558–1570CrossRefGoogle Scholar
  94. 94.
    Huix-Rottlant M, Siri D, Ferré N (2013) Theoretical study of the photochemical generation of triplet acetophenone Phys. Chem Chem Phys 15:19293–19300CrossRefGoogle Scholar
  95. 95.
    Sergentu D-C, Maurice R, Havenith RWA, Broer R, Roca-Sanjuan D (2014) Computational determination of the dominant triplet population mechanism in photoexcited benzophenone. Phys Chem Chem Phys 16:25393–25403CrossRefGoogle Scholar
  96. 96.
    Etienne T, Assfeld X, Monari A (2014) Toward a quantitative assessment of electronic transition’s charge-transfer character. J Chem Theory Comp 10:3896–3905CrossRefGoogle Scholar
  97. 97.
    Kalduk B, Kowalczyk T, Van Voorhis T (2012) Constrained density functional theory. Chem Rev 112:321–370CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jean-Louis Rivail
    • 1
    • 2
    Email author
  • Antonio Monari
    • 1
    • 2
  • Xavier Assfeld
    • 1
    • 2
  1. 1.Theory-Modeling-Simulation, SRSMCUniversité de LorraineVandoeuvre-lès-NancyFrance
  2. 2.CNRS, Theory-Modeling-Simulation, SRSMCVandoeuvre-lès-NancyFrance

Personalised recommendations