Advances in QM/MM Molecular Dynamics Simulations of Chemical Processes at Aqueous Interfaces

  • Marilia T. C. Martins-Costa
  • Manuel F. Ruiz-LópezEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 21)


We review recent studies carried out in our group on the modeling of aqueous interfaces using Molecular Dynamics simulations with a combined Quantum Mechanics and Molecular Mechanics force-field (QM/MM ). We first present the methodology and we comment on some ongoing developments. Since in the QM/MM approach the adsorbed molecule is described quantum mechanically, this computational scheme has allowed us to get insights on interface solvation effects on molecular properties. In particular, we have shown that polarization phenomena at the air–water interface may produce larger effects than polarization in bulk water. This finding contrasts with the usual assumption that polarity at liquid interfaces is close to the arithmetic average of the polarity of the two bulk phases, and that solvation effects at the air–water interface should be similar to the effects in a low polar solvent such as butyl ether. A summary of previous results is presented with some selected examples that are briefly discussed, and which include systems of atmospheric interest at the air–water interface, as well as systems of biological relevance at a water-organic interface. Then, we report some new results for a series of small volatile organic compounds at the air–water interface, namely methyl chloride, acetonitrile and methanol. These molecules share a similar structure but display quite different behaviors at the interface; the discussion focuses on the orientational dynamics and the solvation effects on reactivity indices. Finally, some conclusions and future directions in this exciting field are presented.


Molecular Dynamics Simulation Volatile Organic Compound Water Interface Liquid Interface Radial Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Becke’s 3-parameter-Lee-Yang-Parr exchange-correlation functional defined in reference [64]


Hartree-Fock method


Highest occupied molecular orbital


Lowest unoccupied molecular orbital


Molecular mechanics


Molecular dynamics


Canonical ensemble (constant number of particles, constant volume, constant temperature)


Quantum mechanics


Reactive oxygen species


Self-consistent field method


Sum frequency generation


Volatile organic compound


  1. 1.
    Reichardt C (2003) Solvents and solvent effects in organic chemistry, 3rd edn. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  2. 2.
    Pullman A, Pullman B (1974) Q Rev Biophys 7:505–566CrossRefGoogle Scholar
  3. 3.
    Rinaldi D, Rivail JL (1973) Theor Chim Acta 32:57CrossRefGoogle Scholar
  4. 4.
    Rivail JL, Rinaldi D (1976) Chem Phys 18:233CrossRefGoogle Scholar
  5. 5.
    Rinaldi D, Ruiz-López MF, Rivail JL (1983) J Chem Phys 78:834CrossRefGoogle Scholar
  6. 6.
    Rivail JL, Terryn B, Rinaldi D, Ruiz-Lopez MF (1985) J Mol Struct THEOCHEM 120:387CrossRefGoogle Scholar
  7. 7.
    Dillet V, Rinaldi D, Rivail JL (1994) J Phys Chem 98:5034–5039CrossRefGoogle Scholar
  8. 8.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129CrossRefGoogle Scholar
  9. 9.
    Tomasi J, Persico M (1994) Chem Rev 94:2027–2094CrossRefGoogle Scholar
  10. 10.
    Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct THEOCHEM 464:211–226CrossRefGoogle Scholar
  11. 11.
    Cramer CJ, Truhlar DG (1992) J Comput-Aided Mol Des 6:629–666CrossRefGoogle Scholar
  12. 12.
    Chambers CC, Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:16385–16398CrossRefGoogle Scholar
  13. 13.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200CrossRefGoogle Scholar
  14. 14.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093CrossRefGoogle Scholar
  15. 15.
    Ruiz-López MF (2008) In: Canuto S (ed) Solvation effects on molecules and biomolecules: Computational methods and applications, Springer, Berlin p 23–38Google Scholar
  16. 16.
    Curutchet C, Cramer CJ, Truhlar DG, Ruiz-López MF, Rinaldi D, Orozco M, Luque FJ (2003) J Comput Chem 24:284CrossRefGoogle Scholar
  17. 17.
    Ruiz-López MF, Assfeld X, García JI, Mayoral JA, Salvatella L (1993) J Am Chem Soc 115:8780CrossRefGoogle Scholar
  18. 18.
    Pappalardo RR, Sánchez-Marcos E, Ruiz-López MF, Rinaldi D, Rivail JL (1993) J Am Chem Soc 115:3722–3730CrossRefGoogle Scholar
  19. 19.
    Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700–733CrossRefGoogle Scholar
  20. 20.
    Warshel A, Levitt M (1976) J Mol Biol 103:227–249CrossRefGoogle Scholar
  21. 21.
    Tuñón I, Costa MTC, Millot C, Ruiz-López MF (1995) J Mol Mod 1:196–201CrossRefGoogle Scholar
  22. 22.
    Tuñón I, Martins-Costa MTC, Millot C, Ruiz-Lopez MF (1995) Chem Phys Lett 241:450–456CrossRefGoogle Scholar
  23. 23.
    Stanton RV, Hartsough DS, Merz KM (1993) J Phys Chem 97:11868–11870CrossRefGoogle Scholar
  24. 24.
    Strnad M, Martins-Costa MTC, Millot C, Tuñón I, Ruiz-López MF, Rivail JL (1997) J Chem Phys 106:3643CrossRefGoogle Scholar
  25. 25.
    Tuñón I, Martins-Costa MTC, Millot C, Ruiz-López MF (1997) J Chem Phys 106:3633CrossRefGoogle Scholar
  26. 26.
    Martins-Costa MTC, Ruiz-Lopez MF (2011) Phys Chem Chem Phys 13:11579–11582CrossRefGoogle Scholar
  27. 27.
    Martins-Costa MTC, Anglada JM, Francisco JS, Ruiz-Lopez M (2012) Angew Chem Int Ed 51:5413–5417CrossRefGoogle Scholar
  28. 28.
    Martins-Costa MTC, Anglada JM, Francisco JS, Ruiz-Lopez MF (2012) J Am Chem Soc 134:11821–11827CrossRefGoogle Scholar
  29. 29.
    Martins-Costa MTC, Ruiz-Lopez MF (2013) J Phys Chem B 117:12469–12474CrossRefGoogle Scholar
  30. 30.
    Anglada JM, Martins-Costa M, Ruiz-Lopez MF, Francisco JS (2014) Proc Natl Acad Sci USA 111:11618–11623CrossRefGoogle Scholar
  31. 31.
    Martins-Costa MTC, Garcia-Prieto FF, Ruiz-Lopez MF (2015) Org Biomol Chem 13:1673–1679CrossRefGoogle Scholar
  32. 32.
    van der Kamp MW, Mulholland AJ (2013) Biochemistry 52:2708–2728CrossRefGoogle Scholar
  33. 33.
    Hu H, Yang WT (2008) Annu Rev Phys Chem 59:573–601Google Scholar
  34. 34.
    Lin H, Truhlar DG (2007) Theoret Chem Acc 117:185–199CrossRefGoogle Scholar
  35. 35.
    Senn HM, Thiel W (2007) In: Reiher M (ed) Atomistic approaches in modern biology: from quantum chemistry to molecular simulations. Springer, Berlin pp 173–290Google Scholar
  36. 36.
    Ruiz-López MF, Rivail JL (1998) In: Schleyer PvR (ed) Encyclopedia of computational chemistry. Wiley, New York, p 437Google Scholar
  37. 37.
    Chalmet S, Ruiz-Lopez MF (2000) Chem Phys Lett 329:154CrossRefGoogle Scholar
  38. 38.
    Martin ME, Aguilar MA, Chalmet S, Ruiz-Lopez MF (2002) Chem Phys 284:607CrossRefGoogle Scholar
  39. 39.
    Chalmet S, Ruiz-López MF (1999) J Chem Phys 111:1117–1125CrossRefGoogle Scholar
  40. 40.
    Wang HF, Borguet E, Eisenthal KB (1998) J Phys Chem B 102:4927–4932CrossRefGoogle Scholar
  41. 41.
    Wang HF, Borguet E, Eisenthal KB (1997) J Phys Chem A 101:713–718CrossRefGoogle Scholar
  42. 42.
    Sen S, Yamaguchi S, Tahara T (2009) Angew Chem Int Ed 48:6439–6442CrossRefGoogle Scholar
  43. 43.
    Martins-Costa MC, Ruiz-Lopez M (2015) Theoret Chem Acc 134:1–7CrossRefGoogle Scholar
  44. 44.
    Torrie GM, Valleau JP (1977) J Comput Phys 23:187Google Scholar
  45. 45.
    Laio A, Parrinello M (2002) Proc Natl Acad Sci USA 99:12562–12566CrossRefGoogle Scholar
  46. 46.
    Retegan M, Martins-Costa M, Ruiz-López MF (2010) J Chem Phys 133:064103Google Scholar
  47. 47.
    Chalmet S, Rinaldi D, Ruiz-López MF (2001) Int J Quantum Chem 84:559CrossRefGoogle Scholar
  48. 48.
    Gogonea V, Westerhoff LM, Merz KM Jr (2000) J Chem Phys 113:5604–5613CrossRefGoogle Scholar
  49. 49.
    Cui Q, Guo H, Karplus M (2002) J Chem Phys 117:5617–5631CrossRefGoogle Scholar
  50. 50.
    Mozgawa K, Mennucci B, Frediani L (2014) J Phys Chem C 118:4715–4725CrossRefGoogle Scholar
  51. 51.
    Kelly CP, Cramer CJ, Truhlar DG (2004) J Phys Chem B 108:12882–12897CrossRefGoogle Scholar
  52. 52.
    Wesolowski T, Muller RP, Warshel A (1996) J Phys Chem 100:15444–15449CrossRefGoogle Scholar
  53. 53.
    Anglada JM, Martins-Costa M, Francisco JS, Ruiz-López MF (2015) Acc Chem Res 48:575–583Google Scholar
  54. 54.
    Roeselova M, Jungwirth P, Tobias DJ, Gerber RB (2003) J Phys Chem B 107:12690–12699CrossRefGoogle Scholar
  55. 55.
    Mundy CJ, Kuo IFW, Tuckerman ME, Lee HS, Tobias DJ (2009) Chem Phys Lett 481:2–8CrossRefGoogle Scholar
  56. 56.
    Vácha R, Slavíček P, Mucha M, Finlayson-Pitts BJ, Jungwirth P (2003) J Phys Chem 108:11573CrossRefGoogle Scholar
  57. 57.
    Harper K, Minofar B, Sierra-Hernandez MR, Casillas-Ituarte NN, Roeselova M, Allen HC (2009) J Phys Chem A 113:2015–2024CrossRefGoogle Scholar
  58. 58.
    Pasalic H, Roeselova M, Lischka H (2011) J Phys Chem B 115:1807–1816CrossRefGoogle Scholar
  59. 59.
    Habartova A, Valsaraj KT, Roeselova M (2013) J Phys Chem A 117:9205–9215CrossRefGoogle Scholar
  60. 60.
    Habartova A, Obisesan A, Minofar B, Roeselova M (2014) Theoret Chem Acc 133Google Scholar
  61. 61.
    Nosé S (1984) J Chem Phys 81:511CrossRefGoogle Scholar
  62. 62.
    Hoover WG (1985) Phys Rev A 31:1695CrossRefGoogle Scholar
  63. 63.
    Jorgensen WL, Chandrashekar J, Madura JD, Impey WR, Klein ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  64. 64.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  65. 65.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  66. 66.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, WallingfordGoogle Scholar
  67. 67.
    Ponder JW (2004) TINKER: software tools for molecular design. Washington University School of Medicine, Saint LouisGoogle Scholar
  68. 68.
    Martins-Costa MTC (2014) A Gaussian 09/Tinker 4.2 interface for hybrid QM/MM applications. University of Lorraine—CNRSGoogle Scholar
  69. 69.
    Vila Verde A, Bolhuis PG, Campen RK (2012) J Phys Chem B 116:9467–9481Google Scholar
  70. 70.
    Jungwirth P, Tobias DJ (2006) Chem Rev 106:1259–1281CrossRefGoogle Scholar
  71. 71.
    Enami S, Sakamoto Y, Colussi AJ (2014) Proc Natl Acad Sci USA 111:623–628CrossRefGoogle Scholar
  72. 72.
    Enami S, Mishra H, Hoffmann MR, Colussi AJ (2012) J Phys Chem A 116:6027–6032CrossRefGoogle Scholar
  73. 73.
    Enami S, Stewart LA, Hoffmann MR, Colussi AJ (2010) J Phys Chem Lett 1:3488–3493CrossRefGoogle Scholar
  74. 74.
    Mishra H, Enami S, Nielsen RJ, Stewart LA, Hoffmann MR, Goddard WA III, Colussi AJ (2012) Proc Natl Acad Sci USA 109:18679–18683CrossRefGoogle Scholar
  75. 75.
    Enami S, Hoffmann MR, Colussi AJ (2012) J Phys Chem Lett 3:3102–3108CrossRefGoogle Scholar
  76. 76.
    Griffith EC, Vaida V (2013) J Am Chem Soc 135:710–716CrossRefGoogle Scholar
  77. 77.
    Henderson EA, Donaldson DJ (2012) J Phys Chem A 116:423–429CrossRefGoogle Scholar
  78. 78.
    Jubb AM, Hua W, Allen HC (2012) Annu Rev Phys Chem 63:107–130CrossRefGoogle Scholar
  79. 79.
    Nissenson P, Knox CJH, Finlayson-Pitts BJ, Phillips LF, Dabdub D (2006) Phys Chem Chem Phys 8:4700–4710CrossRefGoogle Scholar
  80. 80.
    Donaldson DJ, Valsaraj KT (2010) Environ Sci Technol 44:865–873CrossRefGoogle Scholar
  81. 81.
    Donaldson DJ, Vaida V (2006) Chem Rev 106:1445–1461CrossRefGoogle Scholar
  82. 82.
    Strekowski RS, Remorov R, George C (2003) J Phys Chem A 107:2497–2504CrossRefGoogle Scholar
  83. 83.
    Mmereki BT, Donaldson DJ (2003) J Phys Chem A 107:11038–11042CrossRefGoogle Scholar
  84. 84.
    Mmereki BT, Donaldson DJ, Gilman JB, Eliason TL, Vaida V (2004) Atmos Environ 38:6091–6103CrossRefGoogle Scholar
  85. 85.
    Kolb CE, Cox RA, Abbatt JPD, Ammann M, Davis EJ, Donaldson DJ, Garrett BC, George C, Griffiths PT, Hanson DR, Kulmala M, McFiggans G, Poschl U, Riipinen I, Rossi MJ, Rudich Y, Wagner PE, Winkler PM, Worsnop DR (2010) O’ Dowd CD. Atmos Chem Phys 10:10561–10605CrossRefGoogle Scholar
  86. 86.
    Raja S, Valsaraj KT (2005) J Air Waste Manage Assoc 55:1345–1355CrossRefGoogle Scholar
  87. 87.
    Valsaraj KT (2012)Google Scholar
  88. 88.
    Superfine R, Huang JY, Shen YR (1990) Opt Lett 15:1276–1278CrossRefGoogle Scholar
  89. 89.
    Yamaguchi S, Tahara T (2008) J Chem Phys 129:101102CrossRefGoogle Scholar
  90. 90.
    Nihonyanagi S, Ishiyama T, Lee T-k, Yamaguchi S, Bonn M, Morita A, Tahara T (2011) J Am Chem Soc 133:16875–16880Google Scholar
  91. 91.
    Stiopkin IV, Jayathilake HD, Bordenyuk AN, Benderskii AV (2008) J Am Chem Soc 130:2271–2275CrossRefGoogle Scholar
  92. 92.
    Backus EH, Eichler A, Kleyn AW, Bonn M (2005) Science 310:1790–1793CrossRefGoogle Scholar
  93. 93.
    Fayer MD, Levinger NE (2010) Annu Rev Anal Chem 3:89–107CrossRefGoogle Scholar
  94. 94.
    Bakker H, Skinner J (2009) Chem Rev 110:1498–1517CrossRefGoogle Scholar
  95. 95.
    Bredenbeck J, Ghosh A, Nienhuys H-K, Bonn M (2009) Acc Chem Res 42:1332–1342CrossRefGoogle Scholar
  96. 96.
    Singh PC, Nihonyanagi S, Yamaguchi S, Tahara T (2012) J Chem Phys 137:094706CrossRefGoogle Scholar
  97. 97.
    Xiong W, Laaser JE, Mehlenbacher RD, Zanni MT (2011) Proc Natl Acad Sci USA 108:20902–20907CrossRefGoogle Scholar
  98. 98.
    Zhang Z, Piatkowski L, Bakker HJ, Bonn M (2011) Nature Chem 3:888–893CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marilia T. C. Martins-Costa
    • 1
  • Manuel F. Ruiz-López
    • 1
    Email author
  1. 1.SRSMCUniversity of Lorraine and CNRSVandoeuvre-lès-NancyFrance

Personalised recommendations