Emerging Molecular, Imaging and Technological Advances in the Field of Robotic Surgery

  • Smita DeEmail author
  • Lara Marie Seltz
  • S. Duke Herrell


A wide variety of novel technologies are currently under development to augment the existing benefits of robot-assisted surgery. A key concept is the emergence of image-guided robotic surgery, and this includes advanced optical and molecular imaging, such as confocal microscopy, as well as integrated intraoperative imaging with more traditional modalities, such as ultrasound. In addition, advances in robotic technology have not only resulted in the innovation of new intraoperative capabilities and potential competitors to the existing robotic platforms, but may also revolutionize the approach to urologic surgery with novel procedure-specific robots.


Surgical robot Image-guided surgery Molecular imaging Confocal microscopy Fluorescence Augmented reality 


  1. 1.
    Tsui C, Klein R, Garabrant M. Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg Endosc. 2013;27(7):2253–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Stitzenberg KB, Wong Y-N, Nielsen ME, Egleston BL, Uzzo RG. Trends in radical prostatectomy: centralization, robotics, and access to urologic cancer care. Cancer. 2012;118(1):54–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Phillips C. Tracking the rise of robotic surgery for prostate cancer. NCI Cancer Bull. 2011;8(16):1–5.Google Scholar
  4. 4.
    Pearce SM, Pariser JJ, Karrison T, Patel SG, Eggener SE. Comparison of perioperative and early oncologic outcomes between open and robotic assisted laparoscopic prostatectomy in a contemporary population based cohort. J Urol. 2016;196(1):76–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Haglind E, Carlsson S, Stranne J, Wallerstedt A, Wilderang U, Thorsteinsdottir T, et al. Urinary incontinence and erectile dysfunction after robotic versus open radical prostatectomy: a prospective, controlled, nonrandomised trial. Eur Urol. 2015;68(2):216–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Chow WH, Devesa SS, Warren JL, Fraumeni JFJ. Rising incidence of renal cell cancer in the United States. JAMA. 1999;281(17):1628–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Xia L, Wang X, Xu T, Guzzo TJ. Systematic review and meta-analysis of comparative studies reporting perioperative outcomes of robot-assisted partial nephrectomy versus open partial nephrectomy. J Endourol. 2017;31(9):893–909.PubMedCrossRefGoogle Scholar
  8. 8.
    Thompson RH, Lane BR, Lohse CM, Leibovich BC, Fergany A, Frank I, et al. Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur Urol. 2010;58(3):340–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Kallingal GJS, Weinberg JM, Reis IM, Nehra A, Venkatachalam MA, Parekh DJ. Long-term response to renal ischaemia in the human kidney after partial nephrectomy: results from a prospective clinical trial. BJU Int. 2016;117(5):766–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Mir MC, Pavan N, Parekh DJ. Current paradigm for ischemia in kidney surgery. J Urol. 2016;195(6):1655–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Desai MM, De Castro Abreu AL, Leslie S, Cai J, Huang EYH, Lewandowski PM, et al. Robotic partial nephrectomy with superselective versus main artery clamping: a retrospective comparison. Eur Urol. 2014;66(4):713–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Borofsky MS, Gill IS, Hemal AK, Marien TP, Jayaratna I, Krane LS, et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 2013;111(4):604–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Zelken JA, Tufaro AP. Current trends and emerging future of indocyanine green usage in surgery and oncology: an update. Ann Surg Oncol. 2015;22(3):1271–83.CrossRefGoogle Scholar
  14. 14.
    Golijanin DJ, Marshall J, Cardin A, Singer EA, Wood RW, Reeder JE, Wu G, Yao JL, Sabina P, Messing EM, Rochester NY, Trieste I. Bilitranslocase (BTL) is immunolocalised in proximal and distal renal tubules and absent in renal cortical tumors accurately corresponding to intraoperative near infrared fluorescence (NIRF) expression of renal cortical tumors using intravenous indocyanin. J Urol. 2008;179(4):2008.Google Scholar
  15. 15.
    Tobis S, Knopf J, Silvers C, Yao J, Rashid H, Wu G, et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol. 2011;186(1):47–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Angell JE, Khemees TA, Abaza R. Optimization of near infrared fluorescence tumor localization during robotic partial nephrectomy. J Urol. 2013;190(5):1668–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Krane LS, Manny TB, Hemal AK. Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: a prospective comparative study of 94 patients. Urology. 2012;80(1):110–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Harke N, Schoen G, Schiefelbein F, Heinrich E. Selective clamping under the usage of near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: a single-surgeon matched-pair study. World J Urol. 2014;32(5):1259–65.PubMedCrossRefGoogle Scholar
  19. 19.
    McClintock TR, Bjurlin MA, Wysock JS, Borofsky MS, Marien TP, Okoro C, et al. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy? Urology. 2014;84(2):327–32.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yezdani M, Yu S-J, Lee DI. Selective arterial clamping versus hilar clamping for minimally invasive partial nephrectomy. Curr Urol Rep. 2016;17(5):40.PubMedCrossRefGoogle Scholar
  21. 21.
    Komninos C, Shin TY, Tuliao P, Han WK, Chung BH, Choi YD, et al. Renal function is the same 6 months after robot-assisted partial nephrectomy regardless of clamp technique: analysis of outcomes for off-clamp, selective arterial clamp and main artery clamp techniques, with a minimum follow-up of 1 year. BJU Int. 2015;115(6):921–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Siddighi S, Yune JJ, Hardesty J. Indocyanine green for intraoperative localization of ureter. Am J Obstet Gynecol. 2014;211(4):436.e1–2.CrossRefGoogle Scholar
  23. 23.
    Lee Z, Moore B, Giusto L, Eun DD. Use of indocyanine green during robot-assisted ureteral reconstructions. Eur Urol. 2015;67(2):291–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Manny TB, Hemal AK. Fluorescence-enhanced robotic radical cystectomy using unconjugated indocyanine green for pelvic lymphangiography, tumor marking, and mesenteric angiography: the initial clinical experience. Urology. 2014;83(4):824–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Manny TB, Pompeo AS, Hemal AK. Robotic partial adrenalectomy using indocyanine green dye with near-infrared imaging: the initial clinical experience. Urology. 2013;82(3):738–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Manny TB, Patel M, Hemal AK. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur Urol. 2014;65(6):1162–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Porcu EP, Salis A, Gavini E, Rassu G, Maestri M, Giunchedi P. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv. 2015;34(5):768–89.CrossRefGoogle Scholar
  28. 28.
    Tang Y, Lei T, Manchanda R, Nagesetti A, Fernandez-Fernandez A, Srinivasan S, et al. Simultaneous delivery of chemotherapeutic and thermal-optical agents to cancer cells by a polymeric (PLGA) nanocarrier: an in vitro study. Pharm Res. 2010;27(10):2242–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Zlatev DV, Altobelli E, Liao JC. Advances in imaging technologies in the evaluation of high-grade bladder cancer. Urol Clin North Am. 2015;42(2):147–57.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lopez A, Zlatev DV, Mach KE, Bui D, Liu J-J, Rouse RV, et al. Intraoperative optical biopsy during robotic-assisted radical prostatectomy using confocal endomicroscopy. J Urol. 2016;195:1110–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Aboumarzouk O, Valentine R, Buist R, Ahmad S, Nabi G, Eljamel S, et al. Laser-induced autofluorescence spectroscopy: can it be of importance in detection of bladder lesions? Photodiagn Photodyn Ther. 2015;12(1):76–83.CrossRefGoogle Scholar
  32. 32.
    Parekh DJ, Lin W-C, Herrell SD. Optical spectroscopy characteristics can differentiate benign and malignant renal tissues: a potentially useful modality. J Urol. 2005;174(5):1754–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Bensalah K, Tuncel A, Peshwani D, Zeltser I, Liu H, Cadeddu J. Optical reflectance spectroscopy to differentiate renal tumor from normal parenchyma. J Urol. 2008;179(5):2010–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Sharma V, Patel N, Shen J, Tang L, Alexandrakis G, Liu H. A dual-modality optical biopsy approach for in vivo detection of prostate cancer in rat model. J Innov Opt Health Sci. 2011;4(03):269–77.CrossRefGoogle Scholar
  35. 35.
    Sharma V, Olweny EO, Kapur P, Cadeddu JA, Roehrborn CG, Liu H. Prostate cancer detection using combined auto-fluorescence and light reflectance spectroscopy: ex vivo study of human prostates. Biomed Opt Express. 2014;5(5):1512–29.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Werahera PN, Jasion EA, Liu Y, van Bokhoven ALMS, Sullivan HT, Crawford ED, La Rosa FG. MP53-13 diagnosis of high grade prostatic cancer using diffuse reflectance spectroscopy. J Urol. 2014;191(4):e593.CrossRefGoogle Scholar
  37. 37.
    Baykara M, Denkceken T, Bassorgun I, Akin Y, Yucel S, Canpolat M. Detecting positive surgical margins using single optical fiber probe during radical prostatectomy: a pilot study. Urology. 2014;83(6):1438–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Morgan MSC, Lay AH, Wang X, Kapur P, Ozayar A, Sayah M, et al. Light reflectance spectroscopy to detect positive surgical margins on prostate cancer specimens. J Urol. 2016;195(2):479–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am. 2008;52:707–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Mitchell CR, Herrell SD. Image-guided surgery and emerging molecular imaging: advances to complement minimally invasive surgery. Urol Clin North Am. 2014;41(4):567–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Teber D, Guven S, Simpfendörfer T, Baumhauer M, Güven EO, Yencilek F, et al. Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol. 2009;56(2):332–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Kolecki R, Schirmer B. Intraoperative and laparoscopic ultrasound. Surg Clin North Am. 1998;78(2):251–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Kaczmarek BF, Sukumar S, Petros F, Trinh Q-D, Mander N, Chen R, et al. Robotic ultrasound probe for tumor identification in robotic partial nephrectomy: initial series and outcomes. Int J Urol. 2013;20(2):172–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Hyams ES, Perlmutter M, Stifelman MD. A prospective evaluation of the utility of laparoscopic Doppler technology during minimally invasive partial nephrectomy. Urology. 2011;77(3):617–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Han M, Kim C, Mozer P, Schafer F, Badaan S, Vigaru B, et al. Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Urology. 2011;77(2):502–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Long JA, Lee BH, Guillotreau J, Autorino R, Laydner H, Yakoubi R, et al. Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy: initial clinical experience. Urology. 2012;80(3):608–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Mohareri O, Ischia J, Black PC, Schneider C, Lobo J, Goldenberg L, et al. Intraoperative registered transrectal ultrasound guidance for robot-assisted laparoscopic radical prostatectomy. J Urol. 2015;193(1):302–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Shoji S, Aron M, de Castro Abreu AL, Leslie S, Ahmadi H, Desai MM, et al. Intraoperative ultrasonography with a surgeon-manipulated microtransducer during robotic radical prostatectomy. Int J Urol. 2014;21(7):736–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Badani KK, Shapiro EY, Berg WT, Kaufman S, Bergman A, Wambi C, et al. A pilot study of laparoscopic Doppler ultrasound probe to map arterial vascular flow within the neurovascular bundle during robot-assisted radical prostatectomy. Prostate Cancer. 2013;2013:810715.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hughes-Hallett A, Mayer EK, Marcus HJ, Cundy TP, Pratt PJ, Darzi AW, et al. Augmented reality partial nephrectomy: examining the current status and future perspectives. Urology. 2014;83(2):266–73.PubMedCrossRefGoogle Scholar
  51. 51.
    Ukimura O, Aron M, Nakamoto M, Shoji S, Abreu AL de C, Matsugasumi T, et al. Three-dimensional surgical navigation model with tilepro display during robot-assisted radical prostatectomy. J Endourol. 2014;28(6):625–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology. 2009;73(4):896–900.PubMedCrossRefGoogle Scholar
  53. 53.
    Kwartowitz DM, Miga MI, Herrell SD, Galloway RL. Towards image guided robotic surgery: multi-arm tracking through hybrid localization. Int J Comput Assist Radiol Surg. 2009;4(3):281–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Herrell SD, Kwartowitz DM, Milhoua PM, Galloway RL. Toward image guided robotic surgery: system validation. J Urol. 2009;181(2):783–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Zihni AM, Ohu I, Cavallo JA, Cho S, Awad MM. Ergonomic analysis of robot-assisted and traditional laparoscopic procedures. Surg Endosc. 2014;28(12):3379–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Hubert N, Gilles M, Desbrosses K, Meyer JP, Felblinger J, Hubert J. Ergonomic assessment of the surgeon’s physical workload during standard and robotic assisted laparoscopic procedures. Int J Med Robot. 2013;9(2):142–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Leveillee RJ, Castle SM, Gorin MA, Salas N, Gorbatiy V. Initial experience with laparoendoscopic single-site simple nephrectomy using the TransEnterix SPIDER surgical system: assessing feasibility and safety. J Endourol. 2011;25(6):923–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Escobar-Dominguez JE, Garcia-Quintero P, Hernandez-Murcia C, Verdeja J-C. Outcomes in laparoscopic cholecystectomy by single incision with SPIDER surgical system are comparable to conventional multiport technique: one surgeon’s experience. Surg Endosc. 2016;30(11):4793–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Murawski J. FDA rejects TransEnterix’s SurgiBot robot. The News & Observer. 2016.;
  60. 60.
    Gidaro S, Buscarini M, Ruiz E, Stark M, Labruzzo A. Telelap Alf-X: a novel telesurgical system for the 21st century. Surg Technol Int. 2012;22:20–5.PubMedGoogle Scholar
  61. 61.
    Fanfani F, Restaino S, Rossitto C, Gueli Alletti S, Costantini B, Monterossi G, et al. Total laparoscopic (S-LPS) versus TELELAP ALF-X robotic-assisted hysterectomy: a case-control study. J Minim Invasive Gynecol. 2016;23(6):933–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Gueli Alletti S, Rossitto C, Fanfani F, Fagotti A, Costantini B, Gidaro S, et al. Telelap Alf-X-assisted laparoscopy for ovarian cyst enucleation: report of the first 10 cases. J Minim Invasive Gynecol. 2015;22(6):1079–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Gueli Alletti S, Rossitto C, Cianci S, Restaino S, Costantini B, Fanfani F, et al. Telelap ALF-X vs standard laparoscopy for the treatment of early-stage endometrial cancer: a single-institution retrospective cohort study. J Minim Invasive Gynecol. 2016;23(3):378–83.PubMedCrossRefGoogle Scholar
  64. 64.
    Bozzini G, Gidaro S, Taverna G. Robot-assisted laparoscopic partial nephrectomy with the ALF-X robot on pig models. Eur Urol. 2016;69:376–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Hannaford B, Rosen J, Friedman DW, King H, Roan P, Cheng L, et al. Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng. 2013;60(4):954–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Mandapathil M, Duvvuri U, Guldner C, Teymoortash A, Lawson G, Werner JA. Transoral surgery for oropharyngeal tumors using the medrobotics((R)) flex((R)) system – a case report. Int J Surg Case Rep. 2015;10:173–5.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hyun S-J, Kim K-J, Jahng T-A, Kim H-J. Efficiency of lead aprons in blocking radiation – how protective are they? Heliyon. 2016;2(5):e00117.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Saglam R, Muslumanoglu AY, Tokatli Z, Caskurlu T, Sarica K, Tasci AI, et al. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1–2b). Eur Urol. 2014;66(6):1092–100.PubMedCrossRefGoogle Scholar
  69. 69.
    Desai MM, Grover R, Aron M, Ganpule A, Joshi SS, Desai MR, et al. Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J Urol. 2011;186(2):563–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Harris M. First surgical robot from secretive startup auris cleared for use. IEEE Spectrum. 2016;Google Scholar
  71. 71.
    Gilling P, Reuther R, Kahokehr A, Fraundorfer M. Aquablation – image-guided robot-assisted waterjet ablation of the prostate: initial clinical experience. BJU Int. 2016;117(6):923–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Cassak D. Verb surgical – surgery in the digital age. MedTech Strategy. 2016;3(8):10–24.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Urologic Surgery, Vanderbilt University Medical CenterVanderbilt Institute in Surgery and EngineeringNashvilleUSA

Personalised recommendations