Robotic Radical Prostatectomy: Margins Positivity and Implications on Cancer Control

  • Shay Golan
  • Vignesh Packiam
  • Arieh L. Shalhav


Robot-assisted radical prostatectomy (RARP) is the standard surgical treatment for localized prostate cancer in the United States. After more than a decade of experience with the robotic approach, its oncological safety has been confirmed with margins positivity comparable to the open approach. Large scale RARP series yielded positive surgical margin (PSM) rates between 9 and 19%. PSM rates are strongly associated with preoperative disease characteristics (i.e., PSA, Gleason score, and clinical stage). As more patients with intermediate and high risk disease undergo RARP, the overall rates of PSM may potentially increase. While PSMs have been repeatedly shown to predict biochemical recurrence (BCR), their impact on more meaningful outcomes, such as the development of metastatic disease and cancer-specific mortality is not completely clear. Gleason score at PSM and PSM margins length are important features of PSM that seems to have influence on the long term impact of PSM. Various surgical techniques and tailoring nerve preservation based on disease severity appear to improve cancer control during RARP. Post radical prostatectomy radiation therapy (RT) also improves oncological outcomes. Level I evidence from open radical prostatectomy literature, demonstrated improved biochemical recurrence-free, metastasis-free, and overall survival when adjuvant radiation therapy was given to patients with adverse pathological features, including PSMs. Yet, the optimal timing of when to deliver additional RT is still unknown and awaits the results of several randomized clinical trials.


Prostate cancer Robotic assisted radical prostatectomy Open radical prostatectomy Pathology Surgical margins Gleason score Biochemical recurrence Prostate cancer-specific mortality Urinary function Sexual function Radiation therapy 



Biochemical recurrence


Body mass index


Biochemical recurrence-free survival


Castrate-resistant prostate cancer


Dorsal venous complex


Laparoscopic radical prostatectomy


Multi-parametric Magnetic Resonance Imaging


Neurovascular bundle


Open radical prostatectomy


Prostate cancer-specific mortality


Positive surgical margin


Robot-assisted radical prostatectomy


Radiation therapy


Southwest Oncology Group


  1. 1.
    Cooperberg MR, Carroll PR. Trends in management for patients with localized prostate cancer, 1990–2013. JAMA. 2015;314(1):80–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Oberlin DT, Flum AS, Lai JD, Meeks JJ. The effect of minimally invasive prostatectomy on practice patterns of American urologists. Urol Oncol. 2016 Jun;34(6):255.e1–5.CrossRefGoogle Scholar
  3. 3.
    Pilecki MA, McGuire BB, Jain U, Kim JY, Nadler RB. National multi-institutional comparison of 30-day postoperative complication and readmission rates between open retropubic radical prostatectomy and robot-assisted laparoscopic prostatectomy using NSQIP. J Endourol. 2014;28(4):430–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Menon M, Shrivastava A, Kaul S, Badani KK, Fumo M, Bhandari M, et al. Vattikuti institute prostatectomy: contemporary technique and analysis of results. Eur Urol. 2007;51(3):648–57. discussion 57-8PubMedCrossRefGoogle Scholar
  5. 5.
    Liu JJ, Maxwell BG, Panousis P, Chung BI. Perioperative outcomes for laparoscopic and robotic compared with open prostatectomy using the national surgical quality improvement program (NSQIP) database. Urology. 2013;82(3):579–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Wallerstedt A, Tyritzis SI, Thorsteinsdottir T, Carlsson S, Stranne J, Gustafsson O, et al. Short-term results after robot-assisted laparoscopic radical prostatectomy compared to open radical prostatectomy. Eur Urol. 2015;67(4):660–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Ficarra V, Novara G, Ahlering TE, Costello A, Eastham JA, Graefen M, et al. Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol. 2012;62(3):418–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Thompson JE, Egger S, Bohm M, Haynes AM, Matthews J, Rasiah K, et al. Superior quality of life and improved surgical margins are achievable with robotic radical prostatectomy after a long learning curve: a prospective single-surgeon study of 1552 consecutive cases. Eur Urol. 2014;65(3):521–31.PubMedCrossRefGoogle Scholar
  9. 9.
    O'Neil B, Koyama T, Alvarez J, Conwill RM, Albertsen PC, Cooperberg MR, et al. The comparative harms of open and robotic prostatectomy in population based samples. J Urol. 2016;195(2):321–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Diaz M, Peabody JO, Kapoor V, Sammon J, Rogers CG, Stricker H, et al. Oncologic outcomes at 10 years following robotic radical prostatectomy. Eur Urol. 2015;67(6):1168–76.PubMedCrossRefGoogle Scholar
  11. 11.
    Abdollah F, Sood A, Sammon JD, Hsu L, Beyer B, Moschini M, et al. Long-term cancer control outcomes in patients with clinically high-risk prostate cancer treated with robot-assisted radical prostatectomy: results from a multi-institutional study of 1100 patients. Eur Urol. 2015;68(3):497–505.PubMedCrossRefGoogle Scholar
  12. 12.
    Tan PH, Cheng L, Srigley JR, Griffiths D, Humphrey PA, van der Kwast TH, et al. International society of urological pathology (ISUP) consensus conference on handling and staging of radical prostatectomy specimens. Working group 5: surgical margins. Mod Pathol. 2011;24(1):48–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Bong GW, Ritenour CW, Osunkoya AO, Smith MT, Keane TE. Evaluation of modern pathological criteria for positive margins in radical prostatectomy specimens and their use for predicting biochemical recurrence. BJU Int. 2009;103(3):327–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Emerson RE, Koch MO, Daggy JK, Cheng L. Closest distance between tumor and resection margin in radical prostatectomy specimens: lack of prognostic significance. Am J Surg Pathol. 2005;29(2):225–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Menon M, Tewari A, Baize B, Guillonneau B, Vallancien G. Prospective comparison of radical retropubic prostatectomy and robot-assisted anatomic prostatectomy: the Vattikuti urology institute experience. Urology. 2002;60(5):864–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Badani KK, Kaul S, Menon M. Evolution of robotic radical prostatectomy: assessment after 2766 procedures. Cancer. 2007;110(9):1951–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Patel VR, Palmer KJ, Coughlin G, Samavedi S. Robot-assisted laparoscopic radical prostatectomy: perioperative outcomes of 1500 cases. J Endourol. 2008;22(10):2299–305.PubMedCrossRefGoogle Scholar
  18. 18.
    Wiltz AL, Shikanov S, Eggener SE, Katz MH, Thong AE, Steinberg GD, et al. Robotic radical prostatectomy in overweight and obese patients: oncological and validated-functional outcomes. Urology. 2009;73(2):316–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Carlucci JR, Nabizada-Pace F, Samadi DB. Robot-assisted laparoscopic radical prostatectomy: technique and outcomes of 700 cases. Int J Biomed Sci. 2009;5(3):201–8.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Shikanov S, Song J, Royce C, Al-Ahmadie H, Zorn K, Steinberg G, et al. Length of positive surgical margin after radical prostatectomy as a predictor of biochemical recurrence. J Urol. 2009;182(1):139–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Coelho RF, Chauhan S, Orvieto MA, Palmer KJ, Rocco B, Patel VR. Predictive factors for positive surgical margins and their locations after robot-assisted laparoscopic radical prostatectomy. Eur Urol. 2010;57(6):1022–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Patel VR, Coelho RF, Rocco B, Orvieto M, Sivaraman A, Palmer KJ, et al. Positive surgical margins after robotic assisted radical prostatectomy: a multi-institutional study. J Urol. 2011;186(2):511–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Sooriakumaran P, Srivastava A, Shariat SF, Stricker PD, Ahlering T, Eden CG, et al. A multinational, multi-institutional study comparing positive surgical margin rates among 22393 open, laparoscopic, and robot-assisted radical prostatectomy patients. Eur Urol. 2014;66(3):450–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Kozal S, Peyronnet B, Cattarino S, Seisen T, Comperat E, Vaessen C, et al. Influence of pathological factors on oncological outcomes after robot-assisted radical prostatectomy for localized prostate cancer: results of a prospective study. Urol Oncol. 2015;33(7):330 e1–7.CrossRefGoogle Scholar
  25. 25.
    Mithal P, Howard LE, Aronson WJ, Terris MK, Cooperberg MR, Kane CJ, et al. Positive surgical margins in radical prostatectomy patients do not predict long-term oncological outcomes: results from the shared equal access regional cancer hospital (SEARCH) cohort. BJU Int. 2016;117(2):244–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Suardi N, DellOglio P, Gallina A, Gandaglia G, Buffi N, Moschini M, et al. Evaluation of positive surgical margins in patients undergoing robot-assisted and open radical prostatectomy according to preoperative risk groups. Urol Oncol. 2016;34(2):57 e1–7.CrossRefGoogle Scholar
  27. 27.
    Novara G, Ficarra V, Mocellin S, Ahlering TE, Carroll PR, Graefen M, et al. Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur Urol. 2012;62(3):382–404.PubMedCrossRefGoogle Scholar
  28. 28.
    Evans SM, Millar JL, Frydenberg M, Murphy DG, Davis ID, Spelman T, et al. Positive surgical margins: rate, contributing factors and impact on further treatment: findings from the prostate cancer registry. BJU Int. 2014;114(5):680–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Lallas CD, Fashola Y, Den RB, Gelpi-Hammerschmidt F, Calvaresi AE, McCue P, et al. Predictors of positive surgical margins after radical prostatectomy at a single institution: preoperative and pathologic factors, and the impact of surgeon variability and technique on incidence and location. Can J Urol. 2014;21(5):7479–86.PubMedGoogle Scholar
  30. 30.
    Tuliao PH, Koo KC, Komninos C, Chang CH, Choi YD, Chung BH, et al. Number of positive preoperative biopsy cores is a predictor of positive surgical margins (PSM) in small prostates after robot-assisted radical prostatectomy (RARP). BJU Int. 2015;116(6):897–904.PubMedCrossRefGoogle Scholar
  31. 31.
    Ficarra V, Novara G, Secco S, D'Elia C, Boscolo-Berto R, Gardiman M, et al. Predictors of positive surgical margins after laparoscopic robot assisted radical prostatectomy. J Urol. 2009;182(6):2682–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Hashimoto T, Yoshioka K, Gondo T, Takeuchi H, Nakagami Y, Nakashima J, et al. Predictors for positive surgical margins after robot-assisted radical prostatectomy: a single surgeon's series in Japan. Int J Urol. 2013;20(9):873–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Castle EP, Atug F, Woods M, Thomas R, Davis R. Impact of body mass index on outcomes after robot assisted radical prostatectomy. World J Urol. 2008;26(1):91–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Herman MP, Raman JD, Dong S, Samadi D, Scherr DS. Increasing body mass index negatively impacts outcomes following robotic radical prostatectomy. JSLS. 2007;11(4):438–42.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ahlering TE, Eichel L, Edwards R, Skarecky DW. Impact of obesity on clinical outcomes in robotic prostatectomy. Urology. 2005;65(4):740–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Marchetti PE, Shikanov S, Razmaria AA, Zagaja GP, Shalhav AL. Impact of prostate weight on probability of positive surgical margins in patients with low-risk prostate cancer after robotic-assisted laparoscopic radical prostatectomy. Urology. 2011;77(3):677–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Sooriakumaran P, John M, Wiklund P, Lee D, Nilsson A, Tewari AK. Learning curve for robotic assisted laparoscopic prostatectomy: a multi-institutional study of 3794 patients. Minerva Urol Nefrol. 2011;63(3):191–8.PubMedGoogle Scholar
  38. 38.
    Leroy TJ, Thiel DD, Duchene DA, Parker AS, Igel TC, Wehle MJ, et al. Safety and peri-operative outcomes during learning curve of robot-assisted laparoscopic prostatectomy: a multi-institutional study of fellowship-trained robotic surgeons versus experienced open radical prostatectomy surgeons incorporating robot-assisted laparoscopic prostatectomy. J Endourol. 2010;24(10):1665–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Dev HS, Wiklund P, Patel V, Parashar D, Palmer K, Nyberg T, et al. Surgical margin length and location affect recurrence rates after robotic prostatectomy. Urol Oncol. 2015;33(3):109 e7–13.CrossRefGoogle Scholar
  40. 40.
    Walz J, Burnett AL, Costello AJ, Eastham JA, Graefen M, Guillonneau B, et al. A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy. Eur Urol. 2010;57(2):179–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Watson RB, Civantos F, Soloway MS. Positive surgical margins with radical prostatectomy: detailed pathological analysis and prognosis. Urology. 1996;48(1):80–90.PubMedCrossRefGoogle Scholar
  42. 42.
    Salomon L, Levrel O, Anastasiadis AG, Irani J, De La Taille A, Saint F, et al. Prognostic significance of tumor volume after radical prostatectomy: a multivariate analysis of pathological prognostic factors. Eur Urol. 2003;43(1):39–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Eastham JA, Kuroiwa K, Ohori M, Serio AM, Gorbonos A, Maru N, et al. Prognostic significance of location of positive margins in radical prostatectomy specimens. Urology. 2007;70(5):965–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Blute ML, Bostwick DG, Bergstralh EJ, Slezak JM, Martin SK, Amling CL, et al. Anatomic site-specific positive margins in organ-confined prostate cancer and its impact on outcome after radical prostatectomy. Urology. 1997;50(5):733–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Aydin H, Tsuzuki T, Hernandez D, Walsh PC, Partin AW, Epstein JI. Positive proximal (bladder neck) margin at radical prostatectomy confers greater risk of biochemical progression. Urology. 2004;64(3):551–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Sooriakumaran P, Ploumidis A, Nyberg T, Olsson M, Akre O, Haendler L, et al. The impact of length and location of positive margins in predicting biochemical recurrence after robot-assisted radical prostatectomy with a minimum follow-up of 5 years. BJU Int. 2015;115(1):106–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Kates M, Sopko NA, Han M, Partin AW, Epstein JI. Importance of reporting the gleason score at the positive surgical margin site: analysis of 4,082 consecutive radical prostatectomy cases. J Urol. 2016;195(2):337–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Viers BR, Sukov WR, Gettman MT, Rangel LJ, Bergstralh EJ, Frank I, et al. Primary Gleason grade 4 at the positive margin is associated with metastasis and death among patients with Gleason 7 prostate cancer undergoing radical prostatectomy. Eur Urol. 2014;66(6):1116–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Roehl KA, Han M, Ramos CG, Antenor JA, Catalona WJ. Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. J Urol. 2004;172(3):910–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Ward JF, Zincke H, Bergstralh EJ, Slezak JM, Myers RP, Blute ML. The impact of surgical approach (nerve bundle preservation versus wide local excision) on surgical margins and biochemical recurrence following radical prostatectomy. J Urol. 2004;172(4 Pt 1):1328–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Han M, Piantadosi S, Zahurak ML, Sokoll LJ, Chan DW, Epstein JI, et al. Serum acid phosphatase level and biochemical recurrence following radical prostatectomy for men with clinically localized prostate cancer. Urology. 2001;57(4):707–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Karakiewicz PI, Eastham JA, Graefen M, Cagiannos I, Stricker PD, Klein E, et al. Prognostic impact of positive surgical margins in surgically treated prostate cancer: multi-institutional assessment of 5831 patients. Urology. 2005;66(6):1245–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Simon MA, Kim S, Soloway MS. Prostate specific antigen recurrence rates are low after radical retropubic prostatectomy and positive margins. J Urol. 2006;175(1):140–4. discussion 4-5PubMedCrossRefGoogle Scholar
  54. 54.
    Pavlovich CP, Trock BJ, Sulman A, Wagner AA, Mettee LZ, Su LM. 3-year actuarial biochemical recurrence-free survival following laparoscopic radical prostatectomy: experience from a tertiary referral center in the United States. J Urol. 2008;179(3):917–21. discussion 21-2PubMedCrossRefGoogle Scholar
  55. 55.
    Murphy DG, Kerger M, Crowe H, Peters JS, Costello AJ. Operative details and oncological and functional outcome of robotic-assisted laparoscopic radical prostatectomy: 400 cases with a minimum of 12 months follow-up. Eur Urol. 2009;55(6):1358–66.PubMedCrossRefGoogle Scholar
  56. 56.
    Stephenson AJ, Wood DP, Kattan MW, Klein EA, Scardino PT, Eastham JA, et al. Location, extent and number of positive surgical margins do not improve accuracy of predicting prostate cancer recurrence after radical prostatectomy. J Urol. 2009;182(4):1357–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Wright JL, Dalkin BL, True LD, Ellis WJ, Stanford JL, Lange PH, et al. Positive surgical margins at radical prostatectomy predict prostate cancer specific mortality. J Urol. 2010;183(6):2213–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Shah SK, Fleet TM, Williams V, Smith AY, Skipper B, Wiggins C. SEER coding standards result in underestimation of positive surgical margin incidence at radical prostatectomy: results of a systematic audit. J Urol. 2011;186(3):855–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Mauermann J, Fradet V, Lacombe L, Dujardin T, Tiguert R, Tetu B, et al. The impact of solitary and multiple positive surgical margins on hard clinical end points in 1712 adjuvant treatment-naive pT2-4 N0 radical prostatectomy patients. Eur Urol. 2013;64(1):19–25.PubMedCrossRefGoogle Scholar
  60. 60.
    Thompson IM, Valicenti RK, Albertsen P, Davis BJ, Goldenberg SL, Hahn C, et al. Adjuvant and salvage radiotherapy after prostatectomy: AUA/ASTRO Guideline. J Urol. 2013;190(2):441–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Stephenson AJ, Scardino PT, Kattan MW, Pisansky TM, Slawin KM, Klein EA, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25(15):2035–41.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bolla M, van Poppel H, Collette L, van Cangh P, Vekemans K, Da Pozzo L, et al. Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC trial 22911). Lancet. 2005;366(9485):572–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Van der Kwast TH, Collette L, Bolla M. Adjuvant radiotherapy after surgery for pathologically advanced prostate cancer. J Clin Oncol. 2007;25(35):5671–2.PubMedCrossRefGoogle Scholar
  64. 64.
    Thompson IM Jr, Tangen CM, Paradelo J, Lucia MS, Miller G, Troyer D, et al. Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA. 2006;296(19):2329–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Thompson IM, Tangen CM, Paradelo J, Lucia MS, Miller G, Troyer D, et al. Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol. 2009;181(3):956–62.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wiegel T, Bottke D, Steiner U, Siegmann A, Golz R, Storkel S, et al. Phase III postoperative adjuvant radiotherapy after radical prostatectomy compared with radical prostatectomy alone in pT3 prostate cancer with postoperative undetectable prostate-specific antigen: ARO 96-02/AUO AP 09/95. J Clin Oncol. 2009;27(18):2924–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Kalbasi A, Swisher-McClure S, Mitra N, Sunderland R, Smaldone MC, Uzzo RG, et al. Low rates of adjuvant radiation in patients with nonmetastatic prostate cancer with high-risk pathologic features. Cancer. 2014;120(19):3089–96.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Maurice MJ, Zhu H, Abouassaly R. Low use of immediate and delayed postoperative radiation for prostate cancer with adverse pathological features. J Urol. 2015;194(4):972–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Budiharto T, Perneel C, Haustermans K, Junius S, Tombal B, Scalliet P, et al. A multi-institutional analysis comparing adjuvant and salvage radiation therapy for high-risk prostate cancer patients with undetectable PSA after prostatectomy. Radiother Oncol. 2010;97(3):474–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Briganti A, Wiegel T, Joniau S, Cozzarini C, Bianchi M, Sun M, et al. Early salvage radiation therapy does not compromise cancer control in patients with pT3N0 prostate cancer after radical prostatectomy: results of a match-controlled multi-institutional analysis. Eur Urol. 2012;62(3):472–87.PubMedCrossRefGoogle Scholar
  71. 71.
    Parker C, Sydes MR, Catton C, Kynaston H, Logue J, Murphy C, et al. Radiotherapy and androgen deprivation in combination after local surgery (RADICALS): a new medical research council/national cancer institute of Canada phase III trial of adjuvant treatment after radical prostatectomy. BJU Int. 2007;99(6):1376–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Pearse M, Fraser-Browne C, Davis ID, Duchesne GM, Fisher R, Frydenberg M, et al. A phase III trial to investigate the timing of radiotherapy for prostate cancer with high-risk features: background and rationale of the radiotherapy–adjuvant versus early salvage (RAVES) trial. BJU Int. 2014;113(Suppl 2):7–12.PubMedCrossRefGoogle Scholar
  73. 73.
    Park BH, Jeon HG, Jeong BC, Seo SI, Lee HM, Choi HY, et al. Influence of magnetic resonance imaging in the decision to preserve or resect neurovascular bundles at robotic assisted laparoscopic radical prostatectomy. J Urol. 2014;192(1):82–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Hricak H, Wang L, Wei DC, Coakley FV, Akin O, Reuter VE, et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer. 2004;100(12):2655–63.PubMedCrossRefGoogle Scholar
  75. 75.
    McClure TD, Margolis DJ, Reiter RE, Sayre JW, Thomas MA, Nagarajan R, et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology. 2012;262(3):874–83.PubMedCrossRefGoogle Scholar
  76. 76.
    Rud E, Baco E, Klotz D, Rennesund K, Svindland A, Berge V, et al. Does preoperative magnetic resonance imaging reduce the rate of positive surgical margins at radical prostatectomy in a randomised clinical trial? Eur Urol. 2015;68(3):487–96.PubMedCrossRefGoogle Scholar
  77. 77.
    Schlomm T, Tennstedt P, Huxhold C, Steuber T, Salomon G, Michl U, et al. Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol. 2012;62(2):333–40.PubMedCrossRefGoogle Scholar
  78. 78.
    von Bodman C, Brock M, Roghmann F, Byers A, Loppenberg B, Braun K, et al. Intraoperative frozen section of the prostate decreases positive margin rate while ensuring nerve sparing procedure during radical prostatectomy. J Urol. 2013;190(2):515–20.CrossRefGoogle Scholar
  79. 79.
    Zorn KC, Gofrit ON, Steinberg GP, Taxy JB, Zagaja GP, Shalhav AL. Planned nerve preservation to reduce positive surgical margins during robot-assisted laparoscopic radical prostatectomy. J Endourol. 2008;22(6):1303–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Guru KA, Perlmutter AE, Sheldon MJ, Butt ZM, Zhang S, Tan W, et al. Apical margins after robot-assisted radical prostatectomy: does technique matter? J Endourol. 2009;23(1):123–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Tewari AK, Srivastava A, Mudaliar K, Tan GY, Grover S, El Douaihy Y, et al. Anatomical retro-apical technique of synchronous (posterior and anterior) urethral transection: a novel approach for ameliorating apical margin positivity during robotic radical prostatectomy. BJU Int. 2010;106(9):1364–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shay Golan
    • 1
  • Vignesh Packiam
    • 1
  • Arieh L. Shalhav
    • 1
  1. 1.Section of UrologyThe University of Chicago Medical CenterChicagoUSA

Personalised recommendations