Advertisement

Impact of Virtual Reality Simulator in Training of Robotic Surgery

  • Hana Yokoi
  • Jian Chen
  • Mihir M. Desai
  • Andrew J. HungEmail author
Chapter

Abstract

Virtual reality simulation is a cost-effective training tool for robotic surgery. With available platforms, users can develop basic, intermediate, and advanced surgical skills. Simulators provide users with objective scoring feedback to improve operating performance. Although there is no present gold standard curriculum for simulator training, we review available exercises and metrics suitable for curriculum design.

Keywords

Simulation Training Robotic surgery Virtual reality 

References

  1. 1.
    Bric J, Lumbard D, Frelich M, Gould J. Current state of virtual reality simulation in robotic surgery training: a review. Surg Endosc. 2016;30(6):2169–78.CrossRefPubMedGoogle Scholar
  2. 2.
    Phé V, Cattarino S, Parra J, Bitker MO, Ambrogi V, Vaessen C, Rouprêt M. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery. Int J Med Robot. 2016.  https://doi.org/10.1002/rcs.1740.
  3. 3.
    Hung A, Jayaratna I, Teruya K, Desai M, Gill I, Goh A. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112(6):864–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Smith R, Truong M, Perez M. Comparative analysis of the functionality of simulators of the da Vinci surgical robot. Surg Endosc. 2015;29(4):972–83.CrossRefPubMedGoogle Scholar
  5. 5.
    Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2016;69(6):1065–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Hung A, Patil M, Zehnder P, Cai J, Ng C, Aron M, Gill I, Desai M. Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol. 2012;187(2):630–7.CrossRefPubMedGoogle Scholar
  7. 7.
    RobotiX Mentor | Simbionix [Internet]. Simbionix.com. 2016. Available from: http://simbionix.com/simulators/robotix-mentor/.
  8. 8.
    Sun A, Aron M, Hung A. Novel training methods for robotic surgery. Indian J Urol. 2014;30(3):333–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gallagher AG, O’Sullivan GC. Fundamentals of surgical simulation. London: Springer Verlag; 2011.Google Scholar
  10. 10.
    Kenney P, Wszolek M, Gould J, Libertino J, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73(6):1288–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Korets R, Mues A, Graversen J, Gupta M, Benson M, Cooper K, Landman J, Badani K. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78(6):1326–30.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee J, Mucksavage P, Kerbl D, Huynh V, Etafy M, McDougall E. Validation study of a virtual reality robotic simulator—role as an assessment tool? J Urol. 2012;187(3):998–1002.CrossRefPubMedGoogle Scholar
  13. 13.
    Liss M, Abdelshehid C, Quach S, Lusch A, Graversen J, Landman J, McDougall E. Validation, correlation, and comparison of the da Vinci trainer™ and the da Vinci surgical skills simulator™ using the Mimic™ software for urologic robotic surgical education. J Endourol. 2012;26(12):1629–34.CrossRefPubMedGoogle Scholar
  14. 14.
    Perrenot C, Perez M, Tran N, Jehl J, Felblinger J, Bresler L, Hubert J. The virtual reality simulator dV-Trainer® is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26(9):2587–93.CrossRefPubMedGoogle Scholar
  15. 15.
    Sethi A, Peine W, Mohammadi Y, Sundaram C. Validation of a novel virtual reality robotic simulator. J Endourol. 2009;23(3):503–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Hung A, Zehnder P, Patil M, Cai J, Ng C, Aron M, Gill I, Desai M. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186(3):1019–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Egi H, Hattori M, Tokunaga M, Suzuki T, Kawaguchi K, Sawada H, Ohdan H. Face, content and concurrent validity of the Mimic1 dV-Trainer for robot-assisted endoscopic surgery: a prospective study. Eur Surg Res. 2013;50(3–4):292–300.CrossRefPubMedGoogle Scholar
  18. 18.
    Schreuder H, Persson J, Wolswijk R, Ihse I, Schijven M, Verheijen R. Validation of a novel virtual reality simulator for robotic surgery. Sci World J. 2014;2014:507076.CrossRefGoogle Scholar
  19. 19.
    Alzahrani T, Haddad R, Alkhayal A, Delisle J, Drudi L, Gotlieb W, Fraser S, Bergman S, Bladou F, Andonian S, Anidjar M. Validation of the da Vinci surgical skill simulator across three surgical disciplines: a pilot study. Can Urol Assoc J. 2013;7(7–8):E520–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kelly D, Margules A, Kundavaram C, Narins H, Gomella L, Trabulsi E, Lallas C. Face, content, and construct validation of the da Vinci skills simulator. Urology. 2012;79(5):1068–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Lyons C, Goldfarb D, Jones S, Badhiwala N, Miles B, Link R, Dunkin B. Which skills really matter? Proving face, content, and construct validity for a commercial robotic simulator. Surg Endosc. 2013;27(6):2020–30.CrossRefPubMedGoogle Scholar
  22. 22.
    Ramos P, Montez J, Tripp A, Ng C, Gill I, Hung A. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. 2014;113(5):836–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Whittaker G, Aydin A, Raison N, Kum F, Challacombe B, Khan M, Dasgupta P, Ahmed K. Validation of the RobotiX mentor robotic surgery simulator. J Endourol. 2016;30(3):338–46.CrossRefPubMedGoogle Scholar
  24. 24.
    Seixas-Mikelus S, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding G, Guru K. Face validation of a novel robotic surgical simulator. Urology. 2010;76(2):357–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Hung A, Shah S, Dalag L, Shin D, Gill I. Development and validation of a novel robotic procedure-specific simulation platform: partial nephrectomy. J Urol. 2015;194(2):520–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Seixas-Mikelus S, Stegemann A, Kesavadas T, Srimathveeravalli G, Sathyaseelan G, Chandrasekhar R, Wilding G, Peabody J, Guru K. Content validation of a novel robotic surgical simulator. BJU Int. 2011;107(7):1130–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Xu S, Perez M, Perrenot C, Hubert N, Hubert J. Face, content, construct, and concurrent validity of a novel robotic surgery patient-side simulator: the Xperience™ Team Trainer. Surg Endosc. 2016;30(8):3334–44.CrossRefPubMedGoogle Scholar
  28. 28.
    Lendvay T, Casale P, Sweet R, Peter C. Initial validation of a virtual-reality robotic simulator. J Robot Surg. 2008;2(3):145–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Kang S, Cho S, Kang S, Haidar A, Samavedi S, Palmer K, Patel V, Cheon J. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology. 2014;84(2):345–50.CrossRefPubMedGoogle Scholar
  30. 30.
    van der Meijden O, Broeders I, Schijven M. The SEP “robot”: a valid virtual reality robotic simulator for the da Vinci surgical system? Surg Technol Int 2010;19:51–58.Google Scholar
  31. 31.
    Gavazzi A, Bahsoun A, Van Haute W, Ahmed K, Elhage O, Jaye P, Khan M, Dasgupta P. Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP robot). Ann R Coll Surg Engl. 2011;93(2):152–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Finnegan K, Meraney A, Staff I, Shichman S. da Vinci skills simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology. 2012;80(2):330–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Connolly M, Seligman J, Kastenmeier A, Goldblatt M, Gould J. Validation of a virtual reality-based robotic surgical skills curriculum. Surg Endosc. 2014;28(5):1691–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Chowriappa A, Shi Y, Raza S, Ahmed K, Stegemann A, Wilding G, Kaouk J, Peabody J, Menon M, Hassett J, Kesavadas T, Guru K. Development and validation of a composite scoring system for robot-assisted surgical training—the Robotic Skills Assessment Score. J Surg Res. 2013;185(2):561–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Raza S, Froghi S, Chowriappa A, Ahmed K, Field E, Stegemann A, Rehman S, Sharif M, Shi Y, Wilding G, Kesavadas T, Kaouk J, Guru K. Construct validation of the key components of Fundamental Skills of Robotic Surgery (FSRS) curriculum—a multi-institution prospective study. J Surg Educ. 2014;71(3):316–24.CrossRefPubMedGoogle Scholar
  36. 36.
    Balasundaram I, Aggarwal R, Darzi A. Short-phase training on a virtual reality simulator improves technical performance in tele- robotic surgery. Int J Med Robot. 2008;4(2):139–45.CrossRefPubMedGoogle Scholar
  37. 37.
    Foell K, Furse A, Honey R, Pace K, Lee J. Multidisciplinary validation study of the da Vinci Skills Simulator: educational tool and assessment device. J Robot Surg. 2013;7(4):365–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Goh A, Goldfarb D, Sander J, Miles B, Dunkin B. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187(1):247–52.CrossRefPubMedGoogle Scholar
  39. 39.
    Mouraviev V, Klein M, Schommer E, Thiel D, Samavedi S, Kumar A, Leveillee R, Thomas R, Pow-Sang J, Su L, Mui E, Smith R, Patel V. Urology residents experience comparable workload profiles when performing live porcine nephrectomies and robotic surgery virtual reality training modules. J Robot Surg. 2016;10(1):49–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Guzzo T, Gonzalgo M. Robotic surgical training of the urologic oncologist. Urol Oncol. 2009;27(2):214–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Bric J, Connolly M, Kastenmeier A, Goldblatt M, Gould J. Proficiency training on a virtual reality robotic surgical skills curriculum. Surg Endosc. 2014;28(12):3343–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang N, Sumer B. Transoral robotic surgery: simulation-based standardized training. JAMA Otolaryngol Head Neck Surg. 2013;139(11):1111–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Rajanbabu A, Drudi L, Lau S, Press J, Gotlieb W. Virtual reality surgical simulators—a prerequisite for robotic surgery. Indian J Surg Oncol. 2014;5(2):125–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vaccaro C, Crisp C, Fellner A, Jackson C, Kleeman S, Pavelka J. Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone: a randomized controlled trial. Female Pelvic Med Reconstr Surg. 2013;19(5):266–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Brinkman W, Luursema J, Kengen B, Schout B, Witjes J, Bekkers R. da Vinci skills simulator for assessing learning curve and criterion-based training of robotic basic skills. Urology. 2013;81(3):562–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Stegemann A, Ahmed K, Syed J, Rehman S, Ghani K, Autorino R, Sharif M, Rao A, Shi Y, Wilding G, Hassett J, Chowriappa A, Kesavadas T, Peabody J, Menon M, Kaouk J, Guru K. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology. 2013;81(4):767–74.CrossRefPubMedGoogle Scholar
  47. 47.
    Lendvay T, Brand T, White L, Kowalewski T, Jonnadula S, Mercer L, Khorsand D, Andros J, Hannaford B, Satava R. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. 2013;216(6):1181–92.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hana Yokoi
    • 1
  • Jian Chen
    • 1
  • Mihir M. Desai
    • 1
  • Andrew J. Hung
    • 1
    Email author
  1. 1.Department of UrologyKeck School of MedicineLos AngelesUSA

Personalised recommendations