Cytopenias: Reactive and Neoplastic

  • Sanam Loghavi
  • Robert P. HasserjianEmail author


Cytopenias are the most common peripheral blood count abnormality that come to medical attention and, in a subset of cases, stimulate performance of a bone marrow biopsy. Cytopenias encompass anemia, leukopenia (most often reduction of the absolute neutrophil count, but also including monocytopenia and lymphopenia), and thrombocytopenia. They may be isolated, involving only one cell line, or may involve two or all three cell lines (pancytopenia).


  1. 1.
    Hillman RS, Ault KA, Leporrier M, Rinder HM. Normal erythropoiesis. In: Hematology in clinical practice, vol. 5e. New York: McGraw-Hill Medical; 2016.Google Scholar
  2. 2.
    Hillman RS, Ault KA, Leporrier M, Rinder HM. Iron-deficiency anemia. In: Hematology in clinical practice, vol. 5e. New York: McGraw-Hill Medical; 2016.Google Scholar
  3. 3.
    Barrett AN, Saminathan R, Choolani M. Thalassaemia screening and confirmation of carriers in parents. Best Pract Res Clin Obstet Gynaecol. 2017;39:27–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Hillman RS, Ault KA, Leporrier M, Rinder HM. The dysplastic and sideroblastic anemias. In: Hematology in clinical practice, vol. 5e. New York: McGraw-Hill Medical; 2016.Google Scholar
  5. 5.
    Bottomley SS, Fleming MD. Sideroblastic anemia: diagnosis and management. Hematol Oncol Clin North Am. 2014;28(4):653–70, vPubMedCrossRefGoogle Scholar
  6. 6.
    Holbro A, Jauch A, Lardinois D, Tzankov A, Dirnhofer S, Hess C. High prevalence of infections and autoimmunity in patients with thymoma. Hum Immunol. 2012;73(3):287–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Go RS, Lust JA, Phyliky RL. Aplastic anemia and pure red cell aplasia associated with large granular lymphocyte leukemia. Semin Hematol. 2003;40(3):196–200.PubMedCrossRefGoogle Scholar
  8. 8.
    Young NS, Brown KE. Parvovirus B19. N Engl J Med. 2004;350(6):586–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Wolfromm A, Rodriguez C, Michel M, Habibi A, Audard V, Benayoun E, et al. Spectrum of adult Parvovirus B19 infection according to the underlying predisposing condition and proposals for clinical practice. Br J Haematol. 2015;170(2):192–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Brown KE. Haematological consequences of parvovirus B19 infection. Bailliere’s Best Pract Res Clin Haematol. 2000;13(2):245–59.CrossRefGoogle Scholar
  11. 11.
    Young NS. Pure Red Cell Aplasia. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology. New York: McGraw-Hill Education; 2015. p. 9e.Google Scholar
  12. 12.
    Wang SA, Yue G, Hutchinson L, Landry ML, Hasserjian RP, Hao S, et al. Myelodysplastic syndrome with pure red cell aplasia shows characteristic clinicopathological features and clonal T-cell expansion. Br J Haematol. 2007;138(2):271–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Makoni SN, Laber DA. Clinical spectrum of myelophthisis in cancer patients. Am J Hematol. 2004;76(1):92–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Paydas S, Ergin M, Baslamisli F, Yavuz S, Zorludemir S, Sahin B, et al. Bone marrow necrosis: clinicopathologic analysis of 20 cases and review of the literature. Am J Hematol. 2002;70(4):300–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Halil O, Farringdon K. Oxalosis: an unusual cause of leucoerythroblastic anaemia. Br J Haematol. 2003;122(1):2.PubMedCrossRefGoogle Scholar
  16. 16.
    Reddy VVB, Prchal JT. Anemia Associated with Marrow Infiltration. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology. New York: McGraw-Hill Education; 2015. p. 9e.Google Scholar
  17. 17.
    Kim Y, Park J, Kim M. Diagnostic approaches for inherited hemolytic anemia in the genetic era. Blood Res. 2017;52(2):84–94.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Narla J, Mohandas N. Red cell membrane disorders. Int J Lab Hematol. 2017;39(Suppl 1):47–52.PubMedCrossRefGoogle Scholar
  19. 19.
    Gallagher PG. Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol. 2004;41(2):142–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Zarkowsky HS, Mohandas N, Speaker CB, Shohet SB. A congenital haemolytic anaemia with thermal sensitivity of the erythrocyte membrane. Br J Haematol. 1975;29(4):537–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Coetzer TL. Erythrocyte membrane disorders. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology. New York: McGraw-Hill Education; 2015. p. 9e.Google Scholar
  22. 22.
    van Solinge WW, van Wijk R. Erythrocyte enzyme disorders. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology. New York: McGraw-Hill Education; 2015. p. 9e.Google Scholar
  23. 23.
    LaRue N, Kahn M, Murray M, Leader BT, Bansil P, McGray S, et al. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency. Am J Trop Med Hyg. 2014;91(4):854–61.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mario N, Baudin B, Aussel C, Giboudeau J. Capillary isoelectric focusing and high-performance cation-exchange chromatography compared for qualitative and quantitative analysis of hemoglobin variants. Clin Chem. 1997;43(11):2137–42.PubMedGoogle Scholar
  25. 25.
    Packman CH. Hemolytic anemia resulting from immune injury. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology. New York: McGraw-Hill Education; 2015. p. 9e.Google Scholar
  26. 26.
    Janka GE. Familial hemophagocytic lymphohistiocytosis. Eur J Pediatr. 1983;140(3):221–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA, et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science. 1999;286(5446):1957–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Zur Stadt U, Beutel K, Kolberg S, Schneppenheim R, Kabisch H, Janka G, et al. Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A. Hum Mutat. 2006;27(1):62–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Rouphael NG, Talati NJ, Vaughan C, Cunningham K, Moreira R, Gould C. Infections associated with haemophagocytic syndrome. Lancet Infect Dis. 2007;7(12):814–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Dhote R, Simon J, Papo T, Detournay B, Sailler L, Andre MH, et al. Reactive hemophagocytic syndrome in adult systemic disease: report of twenty-six cases and literature review. Arthritis Rheum. 2003;49(5):633–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Verbsky JW, Grossman WJ. Hemophagocytic lymphohistiocytosis: diagnosis, pathophysiology, treatment, and future perspectives. Ann Med. 2006;38(1):20–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Kelesidis T, Humphries R, Terashita D, Eshaghian S, Territo MC, Said J, et al. Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in Los Angeles County. J Med Virol. 2012;84(5):777–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Henter JI, Ehrnst A, Andersson J, Elinder G. Familial hemophagocytic lymphohistiocytosis and viral infections. Acta Paediatr. 1993;82(4):369–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Clementi R, Emmi L, Maccario R, Liotta F, Moretta L, Danesino C, et al. Adult onset and atypical presentation of hemophagocytic lymphohistiocytosis in siblings carrying PRF1 mutations. Blood. 2002;100(6):2266–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Henter JI, Horne A, Arico M, Egeler RM, Filipovich AH, Imashuku S, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Risdall RJ, McKenna RW, Nesbit ME, Krivit W, Balfour HH Jr, Simmons RL, et al. Virus-associated hemophagocytic syndrome: a benign histiocytic proliferation distinct from malignant histiocytosis. Cancer. 1979;44(3):993–1002.PubMedCrossRefGoogle Scholar
  37. 37.
    Filipovich AH. Hemophagocytic lymphohistiocytosis and related disorders. Curr Opin Allergy Clin Immunol. 2006;6(6):410–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Ho C, Yao X, Tian L, Li FY, Podoltsev N, Xu ML. Marrow assessment for hemophagocytic lymphohistiocytosis demonstrates poor correlation with disease probability. Am J Clin Pathol. 2014;141(1):62–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Green R. Folate, Cobalamin, and Megaloblastic Anemias. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology. New York: McGraw-Hill Education; 2015. p. 9e.Google Scholar
  40. 40.
    Dale DC, Welte K. Neutropenia and neutrophilia. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology. New York: McGraw-Hill Education; 2015. p. 9e.Google Scholar
  41. 41.
    Barbosa MD, Nguyen QA, Tchernev VT, Ashley JA, Detter JC, Blaydes SM, et al. Identification of the homologous beige and Chediak-Higashi syndrome genes. Nature. 1996;382(6588):262–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Griscelli C, Durandy A, Guy-Grand D, Daguillard F, Herzog C, Prunieras M. A syndrome associating partial albinism and immunodeficiency. Am J Med. 1978;65(4):691–702.PubMedCrossRefGoogle Scholar
  43. 43.
    Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34(1):70–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Dale DC, Link DC. The many causes of severe congenital neutropenia. N Engl J Med. 2009;360(1):3–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet. 1999;23(4):433–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Papadaki HA, Palmblad J, Eliopoulos GD. Non-immune chronic idiopathic neutropenia of adult: an overview. Eur J Haematol. 2001;67(1):35–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Gregg XT, Reddy V, Prchal JT. Copper deficiency masquerading as myelodysplastic syndrome. Blood. 2002;100(4):1493–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Dale DC. How I diagnose and treat neutropenia. Curr Opin Hematol. 2016;23(1):1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Maheshwari A, Christensen RD, Calhoun DA. Immune-mediated neutropenia in the neonate. Acta Paediatr Suppl. 2002;91(438):98–103.PubMedCrossRefGoogle Scholar
  50. 50.
    Starkebaum G. Chronic neutropenia associated with autoimmune disease. Semin Hematol. 2002;39(2):121–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Dale DC. How I manage children with neutropenia. Br J Haematol. 2017;178(3):351–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Vasu S, Caligiuri MA. Lymphocytosis and Lymphocytopenia. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology. New York: McGraw-Hill Education; 2015. p. 9e.Google Scholar
  53. 53.
    Twomey JJ, Douglass CC, Sharkey O Jr. The monocytopenia of aplastic anemia. Blood. 1973;41(2):187–95.PubMedGoogle Scholar
  54. 54.
    Viegas LR, Hoijman E, Beato M, Pecci A. Mechanisms involved in tissue-specific apopotosis regulated by glucocorticoids. J Steroid Biochem Mol Biol. 2008;109(3–5):273–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Fauci AS, Dale DC. The effect of in vivo hydrocortisone on subpopulations of human lymphocytes. J Clin Invest. 1974;53(1):240–6.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ganapathi KA, Townsley DM, Hsu AP, Arthur DC, Zerbe CS, Cuellar-Rodriguez J, et al. GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic anemia. Blood. 2015;125(1):56–70.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Diz-Küçükkaya R, López JA. Thrombocytopenia. In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, et al., editors. Williams hematology, vol. 9e. New York: McGraw-Hill Education; 2015.Google Scholar
  58. 58.
    He R, Reid DM, Jones CE, Shulman NR. Spectrum of Ig classes, specificities, and titers of serum antiglycoproteins in chronic idiopathic thrombocytopenic purpura. Blood. 1994;83(4):1024–32.PubMedGoogle Scholar
  59. 59.
    Dameshek W, Miller EB. The megakaryocytes in idiopathic thrombocytopenic purpura, a form of hypersplenism. Blood. 1946;1:27–50.PubMedGoogle Scholar
  60. 60.
    Kuter DJ, Mufti GJ, Bain BJ, Hasserjian RP, Davis W, Rutstein M. Evaluation of bone marrow reticulin formation in chronic immune thrombocytopenia patients treated with romiplostim. Blood. 2009;114(18):3748–56.PubMedCrossRefGoogle Scholar
  61. 61.
    Brynes RK, Orazi A, Theodore D, Burgess P, Bailey CK, Thein MM, et al. Evaluation of bone marrow reticulin in patients with chronic immune thrombocytopenia treated with eltrombopag: Data from the EXTEND study. Am J Hematol. 2015;90(7):598–601.PubMedCrossRefGoogle Scholar
  62. 62.
    Arepally GM. Heparin-induced thrombocytopenia. Blood. 2017;129(21):2864–72.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Bulchandani D, Nachnani J, Belt R, Hinton S. Acquired pure megakaryocytic aplasia: report of a single case treated with mycophenolate mofetil. Am J Hematol. 2007;82(7):650–1.PubMedCrossRefGoogle Scholar
  64. 64.
    Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Garand R, Goasguen J, Brizard A, Buisine J, Charpentier A, Claisse JF, et al. Indolent course as a relatively frequent presentation in T-prolymphocytic leukaemia. Groupe Francais d’Hematologie Cellulaire. Br J Haematol. 1998;103(2):488–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Forty-five Years of Cancer Incidence in Connecticut, 1935–79. Washington, DC: US Government Printing Office; 1986.Google Scholar
  68. 68.
    Cartwright RA, McNally RJQ, Rowland DJ, Thomas J. The descriptive epidemiology of leukaemia and related conditions in parts of the United Kingdom, 1984–1993. London: Leukemia Research Fund; 1997.Google Scholar
  69. 69.
    Germing U, Strupp C, Kundgen A, Bowen D, Aul C, Haas R, et al. No increase in age-specific incidence of myelodysplastic syndromes. Haematologica. 2004;89(8):905–10.PubMedGoogle Scholar
  70. 70.
    Schoch C, Schnittger S, Kern W, Dugas M, Hiddemann W, Haferlach T. Acute myeloid leukemia with recurring chromosome abnormalities as defined by the WHO-classification: incidence of subgroups, additional genetic abnormalities, FAB subtypes and age distribution in an unselected series of 1,897 patients with acute myeloid leukemia. Haematologica. 2003;88(3):351–2.PubMedGoogle Scholar
  71. 71.
    Smith MT, Linet MS, Morgan GJ. Causative agents in the etiology of myelodysplastic syndromes and the acute myeloid leukemias. In: Bennett JM, editor. The myelodysplastic syndromes, pathobiology and clinical management. New York: Marcel Dekker; 2002. p. 29–63.Google Scholar
  72. 72.
    Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Hasle H, Wadsworth LD, Massing BG, McBride M, Schultz KR. A population-based study of childhood myelodysplastic syndrome in British Columbia, Canada. Br J Haematol. 1999;106(4):1027–32.CrossRefPubMedGoogle Scholar
  74. 74.
    Passmore SJ, Chessells JM, Kempski H, Hann IM, Brownbill PA, Stiller CA. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: a population-based study of incidence and survival. Br J Haematol. 2003;121(5):758–67.PubMedCrossRefGoogle Scholar
  75. 75.
    Rollison DE, Howlader N, Smith MT, Strom SS, Merritt WD, Ries LA, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood. 2008;112(1):45–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gyan E, Dreyfus F, Fenaux P. Refractory thrombocytopenia and neutropenia: a diagnostic challenge. Mediterr J Hematol Infect Dis. 2015;7(1):e2015018.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Marinier DE, Mesa H, Rawal A, Gupta P. Refractory cytopenias with unilineage dysplasia: a retrospective analysis of refractory neutropenia and refractory thrombocytopenia. Leuk Lymphoma. 2010;51(10):1923–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Hertenstein B, Kurrle E, Redenbacher M, Arnold R, Heimpel H. Pseudoreticulocytosis in a patient with myelodysplasia. Ann Hematol. 1993;67(3):127–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Cohen PR, Talpaz M, Kurzrock R. Malignancy-associated Sweet’s syndrome: review of the world literature. J Clin Oncol. 1988;6(12):1887–97.PubMedCrossRefGoogle Scholar
  81. 81.
    Mast K, Taub J, Mosse CA, Matthew P, Hitzler J, Alonzo T, et al. Morphology of myelooid leukemia of down syndrome. Mod Pathol [Abstr]. 2013;26(Suppl 2):345A.Google Scholar
  82. 82.
    Brunning RD, McKenna RW. Atlas of tumor pathology: tumors of the bone marrow. Washington, DC: Armed Forces Institute of Pathology; 1994.Google Scholar
  83. 83.
    Foucar K. Bone marrow pathology. 2nd ed. Chicago: ASCP; 2001.Google Scholar
  84. 84.
    Naeim F. Atlas of bone marrow and blood pathology. Philadelphia: W.B. Saunders; 2001.Google Scholar
  85. 85.
    Baumann I, Fuhrer M, Behrendt S, Campr V, Csomor J, Furlan I, et al. Morphological differentiation of severe aplastic anaemia from hypocellular refractory cytopenia of childhood: reproducibility of histopathological diagnostic criteria. Histopathology. 2012;61(1):10–7.PubMedCrossRefGoogle Scholar
  86. 86.
    de Planque MM, Kluin-Nelemans HC, van Krieken HJ, Kluin PM, Brand A, Beverstock GC, et al. Evolution of acquired severe aplastic anaemia to myelodysplasia and subsequent leukaemia in adults. Br J Haematol. 1988;70(1):55–62.PubMedCrossRefGoogle Scholar
  87. 87.
    Orazi A, Albitar M, Heerema NA, Haskins S, Neiman RS. Hypoplastic myelodysplastic syndromes can be distinguished from acquired aplastic anemia by CD34 and PCNA immunostaining of bone marrow biopsy specimens. Am J Clin Pathol. 1997;107(3):268–74.CrossRefPubMedGoogle Scholar
  88. 88.
    Willis MS, McKenna RW, Peterson LC, Coad JE, Kroft SH. Low blast count myeloid disorders with Auer rods: a clinicopathologic analysis of 9 cases. Am J Clin Pathol. 2005;124(2):191–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Della Porta MG, Travaglino E, Boveri E, Ponzoni M, Malcovati L, Papaemmanuil E, et al. Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia. 2014;29(1):66–75.PubMedCrossRefGoogle Scholar
  90. 90.
    Senent L, Arenillas L, Luno E, Ruiz JC, Sanz G, Florensa L. Reproducibility of the World Health Organization 2008 criteria for myelodysplastic syndromes. Haematologica. 2013;98(4):568–75.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Brunning RD, Orazi A, Germing U, Le Beau MM, Porwit A, Baumann I, et al. Myelodysplastic syndromes/neoplasms, overview. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Piler SA, Stein H, et al., editors. Who classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008. p. 88–93.Google Scholar
  92. 92.
    Bain BJ. The bone marrow aspirate of healthy subjects. Br J Haematol. 1996;94(1):206–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Parmentier S, Schetelig J, Lorenz K, Kramer M, Ireland R, Schuler U, et al. Assessment of dysplastic hematopoiesis: lessons from healthy bone marrow donors. Haematologica. 2012;97(5):723–30.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Steensma DP. Dysplasia has a differential diagnosis: distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors. Curr Hematol Malig Rep. 2012;7(4):310–20.PubMedCrossRefGoogle Scholar
  95. 95.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRefPubMedGoogle Scholar
  96. 96.
    Germing U, Strupp C, Giagounidis A, Haas R, Gattermann N, Starke C, et al. Evaluation of dysplasia through detailed cytomorphology in 3156 patients from the Dusseldorf Registry on myelodysplastic syndromes. Leuk Res. 2012;36(6):727–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Maassen A, Strupp C, Giagounidis A, Kuendgen A, Nachtkamp K, Hildebrandt B, et al. Validation and proposals for a refinement of the WHO 2008 classification of myelodysplastic syndromes without excess of blasts. Leuk Res. 2013;37(1):64–70.PubMedCrossRefGoogle Scholar
  98. 98.
    Verburgh E, Achten R, Louw VJ, Brusselmans C, Delforge M, Boogaerts M, et al. A new disease categorization of low-grade myelodysplastic syndromes based on the expression of cytopenia and dysplasia in one versus more than one lineage improves on the WHO classification. Leukemia. 2007;21(4):668–77.PubMedCrossRefGoogle Scholar
  99. 99.
    Hasserjian R, Gattermann N, Bennett JM, Brunning RD, Thiele J. Refractory anaemia with ring sideroblasts. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008. p. 96–7.Google Scholar
  100. 100.
    Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, Del Canizo C, et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood. 2013;122(17):2943–64.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Germing U, Strupp C, Kuendgen A, Isa S, Knipp S, Hildebrandt B, et al. Prospective validation of the WHO proposals for the classification of myelodysplastic syndromes. Haematologica. 2006;91(12):1596–604.PubMedGoogle Scholar
  102. 102.
    Malcovati L, Porta MG, Pascutto C, Invernizzi R, Boni M, Travaglino E, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23(30):7594–603.PubMedCrossRefGoogle Scholar
  103. 103.
    Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jadersten M, Jansson M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233–41.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Brunning RD, Hasserjian RP, Porwit A, Bennett JM, Orazi A, Thiele J, et al. Refractory cytopenia with unilineage dysplasia. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008. p. 94–5.Google Scholar
  105. 105.
    Cermak J, Michalova K, Brezinova J, Zemanova Z. A prognostic impact of separation of refractory cytopenia with multilineage dysplasia and 5q- syndrome from refractory anemia in primary myelodysplastic syndrome. Leuk Res. 2003;27(3):221–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Howe RB, Porwit-MacDonald A, Wanat R, Tehranchi R, Hellstrom-Lindberg E. The WHO classification of MDS does make a difference. Blood. 2004;103(9):3265–70.PubMedCrossRefGoogle Scholar
  107. 107.
    Lee JH, Shin YR, Lee JS, Kim WK, Chi HS, Park CJ, et al. Application of different prognostic scoring systems and comparison of the FAB and WHO classifications in Korean patients with myelodysplastic syndrome. Leukemia. 2003;17(2):305–13.PubMedCrossRefGoogle Scholar
  108. 108.
    Orazi A, Brunning RD, Baumann I, Hasserjian R. Myelodysplastic syndrome, unclassifiable. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, et al., editors. Who classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008. p. 103.Google Scholar
  109. 109.
    Knipp S, Strupp C, Gattermann N, Hildebrandt B, Schapira M, Giagounidis A, et al. Presence of peripheral blasts in refractory anemia and refractory cytopenia with multilineage dysplasia predicts an unfavourable outcome. Leuk Res. 2008;32(1):33–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Amin HM, Yang Y, Shen Y, Estey EH, Giles FJ, Pierce SA, et al. Having a higher blast percentage in circulation than bone marrow: clinical implications in myelodysplastic syndrome and acute lymphoid and myeloid leukemias. Leukemia. 2005;19(9):1567–72.PubMedCrossRefGoogle Scholar
  111. 111.
    Valent P, Orazi A, Busche G, Schmitt-Graff A, George TI, Sotlar K, et al. Standards and impact of hematopathology in myelodysplastic syndromes (MDS). Oncotarget. 2010;1(7):483–96.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Orazi A, Brunning RD, Hasserjian R, Germing U, Thiele J. Refractory anaemia with excess blasts. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008. p. 100–1.Google Scholar
  113. 113.
    Hasle H, Niemeyer CM, Chessells JM, Baumann I, Bennett JM, Kerndrup G, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia. 2003;17(2):277–82.PubMedCrossRefGoogle Scholar
  114. 114.
    Chan GC, Head DR, Wang WC. Refractory anemia with ringed sideroblasts in children: two diseases with a similar phenotype? J Pediatr Hematol Oncol. 1999;21(5):418–23.PubMedCrossRefGoogle Scholar
  115. 115.
    Vardiman JW, Arber DA, Brunning RD, Larson RA, Matutes I, Baumann I, et al. Therapy-related myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008. p. 127–9.Google Scholar
  116. 116.
    Dann EJ, Rowe JM. Biology and therapy of secondary leukaemias. Best Pract Res Clin Haematol. 2001;14(1):119–37.PubMedCrossRefGoogle Scholar
  117. 117.
    Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102(1):43–52.PubMedCrossRefGoogle Scholar
  118. 118.
    Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518(7540):552–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Ok CY, Hasserjian RP, Fox PS, Stingo F, Zuo Z, Young KH, et al. Application of the international prognostic scoring system-revised in therapy-related myelodysplastic syndromes and oligoblastic acute myeloid leukemia. Leukemia. 2013;28(1):185–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Marisavljevic D, Cemerikic V, Rolovic Z, Boskovic D, Colovic M. Hypocellular myelodysplastic syndromes: clinical and biological significance. Med Oncol. 2005;22(2):169–75.PubMedCrossRefGoogle Scholar
  121. 121.
    Tuzuner N, Cox C, Rowe JM, Watrous D, Bennett JM. Hypocellular myelodysplastic syndromes (MDS): new proposals. Br J Haematol. 1995;91(3):612–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Mikhailova N, Sessarego M, Fugazza G, Caimo A, De Filippi S, van Lint MT, et al. Cytogenetic abnormalities in patients with severe aplastic anemia. Haematologica. 1996;81(5):418–22.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Biesma DH, van den Tweel JG, Verdonck LF. Immunosuppressive therapy for hypoplastic myelodysplastic syndrome. Cancer. 1997;79(8):1548–51.PubMedCrossRefGoogle Scholar
  124. 124.
    Lim ZY, Killick S, Germing U, Cavenagh J, Culligan D, Bacigalupo A, et al. Low IPSS score and bone marrow hypocellularity in MDS patients predict hematological responses to antithymocyte globulin. Leukemia. 2007;21(7):1436–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Sloand EM, CO W, Greenberg P, Young N, Barrett J. Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol. 2008;26(15):2505–11.PubMedCrossRefGoogle Scholar
  126. 126.
    Wang SA, Tang G, Fadare O, Hao S, Raza A, Woda BA, et al. Erythroid-predominant myelodysplastic syndromes: enumeration of blasts from nonerythroid rather than total marrow cells provides superior risk stratification. Mod Pathol. 2008;21(11):1394–402.PubMedCrossRefGoogle Scholar
  127. 127.
    Bacher U, Haferlach C, Alpermann T, Kern W, Schnittger S, Haferlach T. Comparison of genetic and clinical aspects in patients with acute myeloid leukemia and myelodysplastic syndromes all with more than 50% of bone marrow erythropoietic cells. Haematologica. 2011;96(9):1284–92.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hasserjian RP, Zuo Z, Garcia C, Tang G, Kasyan A, Luthra R, et al. Acute erythroid leukemia: a reassessment using criteria refined in the 2008 WHO classification. Blood. 2009;115(10):1985–92.PubMedCrossRefGoogle Scholar
  129. 129.
    Mazzella FM, Kowal-Vern A, Shrit MA, Wibowo AL, Rector JT, Cotelingam JD, et al. Acute erythroleukemia: evaluation of 48 cases with reference to classification, cell proliferation, cytogenetics, and prognosis. Am J Clin Pathol. 1998;110(5):590–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Imbert M, Nguyen D, Sultan C. Myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML) with myelofibrosis. Leuk Res. 1992;16(1):51–4.PubMedCrossRefGoogle Scholar
  131. 131.
    Lambertenghi-Deliliers G, Orazi A, Luksch R, Annaloro C, Soligo D. Myelodysplastic syndrome with increased marrow fibrosis: a distinct clinico-pathological entity. Br J Haematol. 1991;78(2):161–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Fu B, Jaso JM, Sargent RL, Goswami M, Verstovsek S, Medeiros LJ, et al. Bone marrow fibrosis in patients with primary myelodysplastic syndromes has prognostic value using current therapies and new risk stratification systems. Mod Pathol. 2013;27(5):681–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Kussick SJ, Fromm JR, Rossini A, Li Y, Chang A, Norwood TH, et al. Four-color flow cytometry shows strong concordance with bone marrow morphology and cytogenetics in the evaluation for myelodysplasia. Am J Clin Pathol. 2005;124(2):170–81.PubMedCrossRefGoogle Scholar
  134. 134.
    Kern W, Haferlach C, Schnittger S, Haferlach T. Clinical utility of multiparameter flow cytometry in the diagnosis of 1013 patients with suspected myelodysplastic syndrome: correlation to cytomorphology, cytogenetics, and clinical data. Cancer. 2010;116(19):4549–63.PubMedCrossRefGoogle Scholar
  135. 135.
    van de Loosdrecht AA, Ireland R, Kern W, Della Porta MG, Alhan C, Balleisen JS, et al. Rationale for the clinical application of flow cytometry in patients with myelodysplastic syndromes: position paper of an International Consortium and the European LeukemiaNet Working Group. Leuk Lymphoma. 2012;54(3):472–5.PubMedCrossRefGoogle Scholar
  136. 136.
    Wells DA, Benesch M, Loken MR, Vallejo C, Myerson D, Leisenring WM, et al. Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood. 2003;102(1):394–403.PubMedCrossRefGoogle Scholar
  137. 137.
    Stachurski D, Smith BR, Pozdnyakova O, Andersen M, Xiao Z, Raza A, et al. Flow cytometric analysis of myelomonocytic cells by a pattern recognition approach is sensitive and specific in diagnosing myelodysplastic syndrome and related marrow diseases: emphasis on a global evaluation and recognition of diagnostic pitfalls. Leuk Res. 2008;32(2):215–24.PubMedCrossRefGoogle Scholar
  138. 138.
    Bellos F, Alpermann T, Gouberman E, Haferlach C, Schnittger S, Haferlach T, et al. Evaluation of flow cytometric assessment of myeloid nuclear differentiation antigen expression as a diagnostic marker for myelodysplastic syndromes in a series of 269 patients. Cytometry B Clin Cytom. 2012;82(5):295–304.PubMedCrossRefGoogle Scholar
  139. 139.
    McClintock-Treep SA, Briggs RC, Shults KE, Flye-Blakemore LA, Mosse CA, Jagasia MH, et al. Quantitative assessment of myeloid nuclear differentiation antigen distinguishes myelodysplastic syndrome from normal bone marrow. Am J Clin Pathol. 2011;135(3):380–5.PubMedCrossRefGoogle Scholar
  140. 140.
    Ogata K, Kishikawa Y, Satoh C, Tamura H, Dan K, Hayashi A. Diagnostic application of flow cytometric characteristics of CD34+ cells in low-grade myelodysplastic syndromes. Blood. 2006;108(3):1037–44.PubMedCrossRefGoogle Scholar
  141. 141.
    van de Loosdrecht AA, Alhan C, Bene MC, Della Porta MG, Drager AM, Feuillard J, et al. Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes. Haematologica. 2009;94(8):1124–34.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Westers TM, Ireland R, Kern W, Alhan C, Balleisen JS, Bettelheim P, et al. Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet Working Group. Leukemia. 2012;26(7):1730–41.PubMedCrossRefGoogle Scholar
  143. 143.
    Kern W, Haferlach C, Schnittger S, Alpermann T, Haferlach T. Serial assessment of suspected myelodysplastic syndromes: significance of flow cytometric findings validated by cytomorphology, cytogenetics, and molecular genetics. Haematologica. 2013;98(2):201–7.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Ogata K, Della Porta MG, Malcovati L, Picone C, Yokose N, Matsuda A, et al. Diagnostic utility of flow cytometry in low-grade myelodysplastic syndromes: a prospective validation study. Haematologica. 2009;94(8):1066–74.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Truong F, Smith BR, Stachurski D, Cerny J, Medeiros LJ, Woda BA, et al. The utility of flow cytometric immunophenotyping in cytopenic patients with a non-diagnostic bone marrow: a prospective study. Leuk Res. 2009;33(8):1039–46.PubMedCrossRefGoogle Scholar
  146. 146.
    Cleven AH, Nardi V, Ok CY, Goswami M, Dal Cin P, Zheng Z, et al. High p53 protein expression in therapy-related myeloid neoplasms is associated with adverse karyotype and poor outcome. Mod Pathol. 2015;28(4):552–63.PubMedCrossRefGoogle Scholar
  147. 147.
    Zhou Y, Tang G, Medeiros LJ, McDonnell TJ, Keating MJ, Wierda WG, et al. Therapy-related myeloid neoplasms following fludarabine, cyclophosphamide, and rituximab (FCR) treatment in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Mod Pathol. 2012;25(2):237–45.PubMedCrossRefGoogle Scholar
  148. 148.
    Seegmiller AC, Wasserman A, Kim AS, Kressin MK, Marx ER, Zutter MM, et al. Limited utility of fluorescence in situ hybridization for common abnormalities of myelodysplastic syndrome at first presentation and follow-up of myeloid neoplasms. Leuk Lymphoma. 2013;55(3):601–5.PubMedCrossRefGoogle Scholar
  149. 149.
    Yang W, Stotler B, Sevilla DW, Emmons FN, Murty VV, Alobeid B, et al. FISH analysis in addition to G-band karyotyping: utility in evaluation of myelodysplastic syndromes? Leuk Res. 2010;34(4):420–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Vallespi T, Imbert M, Mecucci C, Preudhomme C, Fenaux P. Diagnosis, classification, and cytogenetics of myelodysplastic syndromes. Haematologica. 1998;83(3):258–75.PubMedGoogle Scholar
  151. 151.
    Olney HJ, Le Beau MM. The cytogenetics and molecular biology of myelodysplastic syndromes. In: Bennett JM, editor. The myelodysplastic syndromes, pathobiology and clinical management. New York: Marcel Dekker; 2002. p. 89–119.Google Scholar
  152. 152.
    Raimondi SC. Cytogenetics in MDS. In: Lopes LFHH, editor. Myelodysplastic and myeloproliferative disorders in children. Sao Paulo: Le Mar; 2003. p. 119–61.Google Scholar
  153. 153.
    Gupta V, Brooker C, Tooze JA, Yi QL, Sage D, Turner D, et al. Clinical relevance of cytogenetic abnormalities at diagnosis of acquired aplastic anaemia in adults. Br J Haematol. 2006;134(1):95–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet. 2012;44(6):651–8.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Soupir CP, Vergilio JA, Kelly E, Dal Cin P, Kuter D, Hasserjian RP. Identification of del(20q) in a subset of patients diagnosed with idiopathic thrombocytopenic purpura. Br J Haematol. 2009;144(5):800–2.PubMedCrossRefGoogle Scholar
  156. 156.
    Woll PS, Kjallquist U, Chowdhury O, Doolittle H, Wedge DC, Thongjuea S, et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell. 2014;25(6):794–808.PubMedCrossRefGoogle Scholar
  157. 157.
    Mallo M, Cervera J, Schanz J, Such E, Garcia-Manero G, Luno E, et al. Impact of adjunct cytogenetic abnormalities for prognostic stratification in patients with myelodysplastic syndrome and deletion 5q. Leukemia. 2010;25(1):110–20.PubMedCrossRefGoogle Scholar
  158. 158.
    Schanz J, Tuchler H, Sole F, Mallo M, Luno E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30(8):820–9.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Morishita K, Parganas E, William CL, Whittaker MH, Drabkin H, Oval J, et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300-400 kilobases on chromosome band 3q26. Proc Natl Acad Sci U S A. 1992;89(9):3937–41.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Rogers HJ, Vardiman JW, Anastasi J, Raca G, Savage NM, Cherry AM, et al. Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica. 2014;99(5):821–9.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Padua RA, Guinn BA, Al-Sabah AI, Smith M, Taylor C, Pettersson T, et al. RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia. 1998;12(6):887–92.PubMedCrossRefGoogle Scholar
  162. 162.
    Kanagal-Shamanna R, Bueso-Ramos CE, Barkoh B, Lu G, Wang S, Garcia-Manero G, et al. Myeloid neoplasms with isolated isochromosome 17q represent a clinicopathologic entity associated with myelodysplastic/myeloproliferative features, a high risk of leukemic transformation, and wild-type TP53. Cancer. 2012;118(11):2879–88.PubMedCrossRefGoogle Scholar
  163. 163.
    Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med. 2012;366(12):1090–8.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Cazzola M, Rossi M, Malcovati L. Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood. 2012;121(2):260–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Gerstung M, Pellagatti A, Malcovati L, Giagounidis A, Porta MG, Jadersten M, et al. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nat Commun. 2015;6:5901.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32(25):2691–8.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Davies SM, Robison LL, Buckley JD, Radloff GA, Ross JA, Perentesis JP. Glutathione S-transferase polymorphisms in children with myeloid leukemia: a Children’s Cancer Group study. Cancer Epidemiol Biomarkers Prev. 2000;9(6):563–6.PubMedGoogle Scholar
  170. 170.
    Kishi S, Yang W, Boureau B, Morand S, Das S, Chen P, et al. Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood. 2004;103(1):67–72.PubMedCrossRefGoogle Scholar
  171. 171.
    Pui CH, Relling MV, Evans WE. Role of pharmacogenomics and pharmacodynamics in the treatment of acute lymphoblastic leukaemia. Best Pract Res Clin Haematol. 2002;15(4):741–56.PubMedCrossRefGoogle Scholar
  172. 172.
    Tang G, Jorgensen LJ, Zhou Y, Hu Y, Kersh M, Garcia-Manero G, et al. Multi-color CD34(+) progenitor-focused flow cytometric assay in evaluation of myelodysplastic syndromes in patients with post cancer therapy cytopenia. Leuk Res. 2012g;36(8):974–81.PubMedCrossRefGoogle Scholar
  173. 173.
    Ramadurai J, Shapiro C, Kozloff M, Telfer M. Zinc abuse and sideroblastic anemia. Am J Hematol. 1993;42(2):227–8.PubMedCrossRefGoogle Scholar
  174. 174.
    Prodan CI, Holland NR, Wisdom PJ, Burstein SA, Bottomley SS. CNS demyelination associated with copper deficiency and hyperzincemia. Neurology. 2002;59(9):1453–6.PubMedCrossRefGoogle Scholar
  175. 175.
    Condamine L, Hermine O, Alvin P, Levine M, Rey C, Courtecuisse V. Acquired sideroblastic anaemia during treatment of Wilson's disease with triethylene tetramine dihydrochloride. Br J Haematol. 1993;83(1):166–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Dunlap WM, James GW 3rd, Hume DM. Anemia and neutropenia caused by copper deficiency. Ann Intern Med. 1974;80(4):470–6.PubMedCrossRefGoogle Scholar
  177. 177.
    Rezuke WN, Anderson C, Pastuszak WT, Conway SR, Firshein SI. Arsenic intoxication presenting as a myelodysplastic syndrome: a case report. Am J Hematol. 1991;36(4):291–3.PubMedCrossRefGoogle Scholar
  178. 178.
    Kirby MA, Weitzman S, Freedman MH. Juvenile chronic myelogenous leukemia: differentiation from infantile cytomegalovirus infection. Am J Pediatr Hematol Oncol. 1990;12(3):292–6.PubMedCrossRefGoogle Scholar
  179. 179.
    Hasle H, Kerndrup G, Jacobsen BB, Heegaard ED, Hornsleth A, Lillevang ST. Chronic parvovirus infection mimicking myelodysplastic syndrome in a child with subclinical immunodeficiency. Am J Pediatr Hematol Oncol. 1994;16(4):329–33.PubMedGoogle Scholar
  180. 180.
    Bagby GC, Meyers G. Bone marrow failure as a risk factor for clonal evolution: prospects for leukemia prevention. Hematology Am Soc Hematol Educ Program. 2007;2007:40–6.Google Scholar
  181. 181.
    Wang SA, Pozdnyakova O, Jorgensen JL, Medeiros LJ, Stachurski D, Anderson M, et al. Detection of paroxysmal nocturnal hemoglobinuria clones in patients with myelodysplastic syndromes and related bone marrow diseases, with emphasis on diagnostic pitfalls and caveats. Haematologica. 2009;94(1):29–37.CrossRefPubMedGoogle Scholar
  182. 182.
    Socie G, Mary JY, de Gramont A, Rio B, Leporrier M, Rose C, et al. Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. French Society of Haematology. Lancet. 1996;348(9027):573–7.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Valent P, Bain BJ, Bennett JM, Wimazal F, Sperr WR, Mufti G, et al. Idiopathic cytopenia of undetermined significance (ICUS) and idiopathic dysplasia of uncertain significance (IDUS), and their distinction from low risk MDS. Leuk Res. 2012;36(1):1–5.PubMedCrossRefGoogle Scholar
  184. 184.
    Valent P, Horny HP, Bennett JM, Fonatsch C, Germing U, Greenberg P, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: Consensus statements and report from a working conference. Leuk Res. 2007;31(6):727–36.PubMedCrossRefGoogle Scholar
  185. 185.
    Ando K, Tanaka Y, Hashimoto Y, Ohyashiki JH, Sugimori N, Nakao S, et al. PNH-phenotype cells in patients with idiopathic cytopenia of undetermined significance (ICUS) with megakaryocytic hypoplasia and thrombocytopenia. Br J Haematol. 2010;150(6):705–7.PubMedCrossRefGoogle Scholar
  186. 186.
    Valent P, Jager E, Mitterbauer-Hohendanner G, Mullauer L, Schwarzinger I, Sperr WR, et al. Idiopathic bone marrow dysplasia of unknown significance (IDUS): definition, pathogenesis, follow up, and prognosis. Am J Cancer Res. 2011;1(4):531–41.PubMedGoogle Scholar
  187. 187.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Kwok B, Hall JM, Witte JS, Xu Y, Reddy P, Lin K, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126(21):2355–61.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Malcovati L, Galli A, Travaglino E, Ambaglio I, Rizzo E, Molteni E, et al. Clinical significance of somatic mutation in unexplained blood cytopenia. Blood. 2017;129(25):3371–8.PubMedPubMedCentralGoogle Scholar
  193. 193.
    Cargo CA, Rowbotham N, Evans PA, Barrans SL, Bowen DT, Crouch S, et al. Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression. Blood. 2015;126(21):2362–5.PubMedCrossRefGoogle Scholar
  194. 194.
    Ohgami RS, Ohgami JK, Pereira IT, Gitana G, Zehnder JL, Arber DA. Refining the diagnosis of T-cell large granular lymphocytic leukemia by combining distinct patterns of antigen expression with T-cell clonality studies. Leukemia. 2011;25(9):1439–43.PubMedCrossRefGoogle Scholar
  195. 195.
    Huh YO, Medeiros LJ, Ravandi F, Konoplev S, Jorgensen JL, Miranda RN. T-cell large granular lymphocyte leukemia associated with myelodysplastic syndrome: a clinicopathologic study of nine cases. Am J Clin Pathol. 2009;131(3):347–56.PubMedCrossRefGoogle Scholar
  196. 196.
    Jerez A, Clemente MJ, Makishima H, Rajala H, Gomez-Segui I, Olson T, et al. STAT3 mutations indicate the presence of subclinical T-cell clones in a subset of aplastic anemia and myelodysplastic syndrome patients. Blood. 2013;122(14):2453–9.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Marks PW, Mitus AJ. Congenital dyserythropoietic anemias. Am J Hematol. 1996;51(1):55–63.PubMedCrossRefGoogle Scholar
  198. 198.
    Hines JD, Cowan DH. Studies on the pathogenesis of alcohol-induced sideroblastic bone-marrow abnormalities. N Engl J Med. 1970;283(9):441–6.PubMedCrossRefGoogle Scholar
  199. 199.
    Sharp RA, Lowe JG, Johnston RN. Anti-tuberculous drugs and sideroblastic anaemia. Br J Clin Pract. 1990;44(12):706–7.PubMedGoogle Scholar
  200. 200.
    Beck EA, Ziegler G, Schmid R, Ludin H. Reversible sideroblastic anemia caused by chloramphenicol. Acta Haematol. 1967;38(1):1–10.PubMedCrossRefGoogle Scholar
  201. 201.
    Kandola L, Swannell AJ, Hunter A. Acquired sideroblastic anaemia associated with penicillamine therapy for rheumatoid arthritis. Ann Rheum Dis. 1995;54(6):529–30.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Ok CY, Medeiros LJ, Hu Y, Bueso-Ramos CE, Wang SA. Transient/reversible ring sideroblasts in bone marrow of patients post cytotoxic therapies for primary malignancies. Leuk Res. 2011;35(12):1605–10.CrossRefPubMedGoogle Scholar
  203. 203.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.PubMedCrossRefGoogle Scholar
  204. 204.
    Nelson ME, Steensma DP. JAK2 V617F in myeloid disorders: what do we know now, and where are we headed? Leuk Lymphoma. 2006;47(2):177–94.PubMedCrossRefGoogle Scholar
  205. 205.
    Ohyashiki K, Aota Y, Akahane D, Gotoh A, Miyazawa K, Kimura Y, et al. The JAK2 V617F tyrosine kinase mutation in myelodysplastic syndromes (MDS) developing myelofibrosis indicates the myeloproliferative nature in a subset of MDS patients. Leukemia. 2005;19(12):2359–60.PubMedCrossRefGoogle Scholar
  206. 206.
    Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, Townsley D, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373(1):35–47.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Wang SA, Galili N, Cerny J, Sechman E, Chen SS, Loew J, et al. Chronic myelomonocytic leukemia evolving from preexisting myelodysplasia shares many features with de novo disease. Am J Clin Pathol. 2006;126(5):789–97.PubMedCrossRefGoogle Scholar
  208. 208.
    Head DR. Revised classification of acute myeloid leukemia. Leukemia. 1996;10(11):1826–31.PubMedGoogle Scholar
  209. 209.
    Liu W, Hasserjian RP, Hu Y, Zhang L, Miranda RN, Medeiros LJ, et al. Pure erythroid leukemia: a reassessment of the entity using the 2008 World Health Organization classification. Mod Pathol. 2010;24(3):375–83.PubMedCrossRefGoogle Scholar
  210. 210.
    Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110(10):3540–6.PubMedCrossRefGoogle Scholar
  211. 211.
    Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41.PubMedCrossRefGoogle Scholar
  212. 212.
    Marti-Carvajal AJ, Anand V, Sola I. Janus kinase-1 and Janus kinase-2 inhibitors for treating myelofibrosis. Cochrane Database Syst Rev. 2015;10(4):CD010298.Google Scholar
  213. 213.
    Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, et al. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014;15(10):1090–9.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    O’Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15(1):48–58.PubMedCrossRefGoogle Scholar
  215. 215.
    Cattaneo C, Spedini P, Casari S, Re A, Tucci A, Borlenghi E, et al. Delayed-onset peripheral blood cytopenia after rituximab: frequency and risk factor assessment in a consecutive series of 77 treatments. Leuk Lymphoma. 2006;47(6):1013–7.PubMedCrossRefGoogle Scholar
  216. 216.
    Peyrade F, Bologna S, Delwail V, Emile JF, Pascal L, Ferme C, et al. Combination of ofatumumab and reduced-dose CHOP for diffuse large B-cell lymphomas in patients aged 80 years or older: an open-label, multicentre, single-arm, phase 2 trial from the LYSA group. Lancet Haematol. 2017;4(1):e46–55.PubMedCrossRefGoogle Scholar
  217. 217.
    Grigg A, Dyer MJ, Diaz MG, Dreyling M, Rule S, Lei G, et al. Safety and efficacy of obinutuzumab with CHOP or bendamustine in previously untreated follicular lymphoma. Haematologica. 2017;102(4):765–72.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Keating MJ, Flinn I, Jain V, Binet JL, Hillmen P, Byrd J, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99(10):3554–61.PubMedCrossRefGoogle Scholar
  219. 219.
    Scott LJ. Brentuximab vedotin: a review in CD30-positive Hodgkin lymphoma. Drugs. 2017;77(4):435–45.PubMedCrossRefGoogle Scholar
  220. 220.
    Brito-Zeron P, Soria N, Munoz S, Bove A, Akasbi M, Belenguer R, et al. Prevalence and clinical relevance of autoimmune neutropenia in patients with primary Sjogren’s syndrome. Semin Arthritis Rheum. 2009;38(5):389–95.PubMedCrossRefGoogle Scholar
  221. 221.
    Grunebaum E, Cohen A, Roifman CM. Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. 2013;13(6):630–8.PubMedCrossRefGoogle Scholar
  222. 222.
    Cassani B, Mirolo M, Cattaneo F, Benninghoff U, Hershfield M, Carlucci F, et al. Altered intracellular and extracellular signaling leads to impaired T-cell functions in ADA-SCID patients. Blood. 2008;111(8):4209–19.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Lagresle-Peyrou C, Six EM, Picard C, Rieux-Laucat F, Michel V, Ditadi A, et al. Human adenylate kinase 2 deficiency causes a profound hematopoietic defect associated with sensorineural deafness. Nat Genet. 2009;41(1):106–11.PubMedCrossRefGoogle Scholar
  224. 224.
    Pannicke U, Honig M, Hess I, Friesen C, Holzmann K, Rump EM, et al. Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet. 2009;41(1):101–5.PubMedCrossRefGoogle Scholar
  225. 225.
    Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol. 2009;9(7):480–90.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377(6544):65–8.PubMedCrossRefGoogle Scholar
  227. 227.
    Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119(7):1650–7.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Salzer U, Warnatz K, Peter HH. Common variable immunodeficiency: an update. Arthritis Res Ther. 2012;14(5):223.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Chen K, Coonrod EM, Kumanovics A, Franks ZF, Durtschi JD, Margraf RL, et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet. 2013;93(5):812–24.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15(1):88–97.PubMedCrossRefGoogle Scholar
  231. 231.
    Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013;342(6160):866–71.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, Carson KA, Lederman HM. Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr. 2004;144(4):505–11.PubMedCrossRefGoogle Scholar
  233. 233.
    Ancliff PJ, Blundell MP, Cory GO, Calle Y, Worth A, Kempski H, et al. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood. 2006;108(7):2182–9.PubMedCrossRefGoogle Scholar
  234. 234.
    Kainulainen L, Lassila O, Ruuskanen O. Cartilage-hair hypoplasia: follow-up of immunodeficiency in two patients. J Clin Immunol. 2014;34(2):256–9.PubMedCrossRefGoogle Scholar
  235. 235.
    Etzioni A, Benderly A, Rosenthal E, Shehadah V, Auslander L, Lahat N, et al. Defective humoral and cellular immune functions associated with veno-occlusive disease of the liver. J Pediatr. 1987;110(4):549–54.PubMedCrossRefGoogle Scholar
  236. 236.
    Grever MR, Abdel-Wahab O, Andritsos LA, Banerji V, Barrientos J, Blachly JS, et al. Consensus guidelines for the diagnosis and management of patients with classic hairy cell leukemia. Blood. 2017;129(5):553–60.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Hsu AP, Johnson KD, Falcone EL, Sanalkumar R, Sanchez L, Hickstein DD, et al. GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome. Blood. 2013;121(19):3830–7. S1–7PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood. 2011;118(10):2656–8.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, Olivier KN, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):1519–29.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Porwit A, van de Loosdrecht AA, Bettelheim P, Brodersen LE, Burbury K, Cremers E, et al. Revisiting guidelines for integration of flow cytometry results in the WHO classification of myelodysplastic syndromes-proposal from the International/European LeukemiaNet Working Group for Flow Cytometry in MDS. Leukemia. 2014;28(9):1793–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Pathology, WRN244Massachusetts General HospitalBostonUSA

Personalised recommendations