Keyword Pattern Graph Relaxation for Selective Result Space Expansion on Linked Data

  • Ananya DassEmail author
  • Cem Aksoy
  • Aggeliki Dimitriou
  • Dimitri Theodoratos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9114)


Keyword search is a popular technique for querying the ever growing repositories of RDF graph data. In recent years different approaches leverage a structural summary of the graph data to address the typical keyword search related problems. These approaches compute queries (pattern graphs) corresponding to alternative interpretations of the keyword query and the user selects one that matches her intention to be evaluated against the data. Though promising, these approaches suffer from a drawback: because summaries are approximate representations of the data, they might return empty answers or miss results which are relevant to the user intent.

In this paper, we present a novel approach which combines the use of the structural summary and the user feedback with a relaxation technique for pattern graphs. We leverage pattern graph homomorphisms to define relaxed pattern graphs that are able to extract more results potentially of interest to the user. We introduce an operation on pattern graphs and we show that it can produce all relaxed pattern graphs. To guarantee that the result pattern graphs are as close to the initial pattern graph as possible, we devise different metrics to measure the degree of relaxation of a pattern graph. We design an algorithm that computes relaxed pattern graphs with non-empty answers in relaxation order. Finally, we run experiments to measure the effectiveness of our ranking of relaxed pattern graphs and the efficiency of our system.


  1. 1.
    Agresti, A.: Analysis of ordinal categorical data. John Wiley & Sons (2010)Google Scholar
  2. 2.
    Aksoy, C., Dass, A., Theodoratos, D., Wu, X.: Clustering query results to support keyword search on tree data. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 213–224. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Aksoy, C., Dimitriou, A., Theodoratos, D.: Reasoning with patterns to effectively answer XML keyword queries. The VLDB Journal (2015). doi: 10.1007/s00778-015-0384-3 Google Scholar
  4. 4.
    Aksoy, C., Dimitriou, A., Theodoratos, D., Wu, X.: XReason: a semantic approach that reasons with patterns to answer XML keyword queries. In: Meng, W., Feng, L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part I. LNCS, vol. 7825, pp. 299–314. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Amer-Yahia, S., Cho, S.R., Srivastava, D.: Tree pattern relaxation. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  6. 6.
    Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and browsing in databases using BANKS. In: ICDE, pp. 431–440 (2002)Google Scholar
  7. 7.
    Brodianskiy, T., Cohen, S.: Self-correcting queries for XML. In: CIKM (2007)Google Scholar
  8. 8.
    Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword search on external memory data graphs. PVLDB 1(1), 1189–1204 (2008)Google Scholar
  9. 9.
    Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D.: Exploiting semantic result clustering to support keyword search on linked data. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014, Part I. LNCS, vol. 8786, pp. 448–463. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  10. 10.
    Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost connected trees in databases. In: ICDE, pp. 836–845 (2007)Google Scholar
  11. 11.
    Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: CIKM (2011)Google Scholar
  12. 12.
    Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching RDF graphs with sparql and keywords. IEEE Data Eng. Bull., 16–24 (2010)Google Scholar
  13. 13.
    Fu, H., Gao, S., Anyanwu, K.: Disambiguating keyword queries on RDF databases using “Deep” segmentation. In: ICSC, pp. 236–243 (2010)Google Scholar
  14. 14.
    Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data graphs. In: SIGMOD, pp. 927–940 (2008)Google Scholar
  15. 15.
    Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword search over XML documents. In: SIGMOD, pp. 16–27 (2003)Google Scholar
  16. 16.
    He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: SIGMOD, pp. 305–316 (2007)Google Scholar
  17. 17.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)CrossRefGoogle Scholar
  18. 18.
    Jiang, M., Chen, Y., Chen, J., Du, X.: Interactive predicate suggestion for keyword search on RDF graphs. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA 2011, Part II. LNCS, vol. 7121, pp. 96–109. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirectional expansion for keyword search on graph databases. In: VLDB, pp. 505–516 (2005)Google Scholar
  20. 20.
    Kargar, M., An, A.: Keyword search in graphs: Finding r-cliques. VLDB (2011)Google Scholar
  21. 21.
    Kong, L., Gilleron, R., Mostrare, A.L.: Retrieving meaningful relaxed tightest fragments for XML keyword search. In: EDBT, pp. 815–826 (2009)Google Scholar
  22. 22.
    Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large RDF data. IEEE Trans. Knowl. Data Eng. 26(11), 2774–2788 (2014)CrossRefGoogle Scholar
  23. 23.
    Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: SIGMOD, pp. 903–914 (2008)Google Scholar
  24. 24.
    Qin, L., Yu, J.X., Chang, L., Tao, Y.: Querying communities in relational databases. In: ICDE, pp. 724–735 (2009)Google Scholar
  25. 25.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (RDF) data. In: ICDE (2009)Google Scholar
  26. 26.
    Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: a lightweight keyword interface to semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584–598. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  27. 27.
    Xu, K., Chen, J., Wang, H., Yu, Y.: Hybrid graph based keyword query interpretation on RDF. In: ISWC (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ananya Dass
    • 1
    Email author
  • Cem Aksoy
    • 1
  • Aggeliki Dimitriou
    • 2
  • Dimitri Theodoratos
    • 1
  1. 1.New Jersey Institute of TechnologyNewarkUSA
  2. 2.National Technical University of AthensAthensGreece

Personalised recommendations