Advertisement

The Coronary Vascular System and Associated Medical Devices

  • Julianne H. SpencerEmail author
  • Sara E. Anderson
  • Ryan Lahm
  • Paul A. Iaizzo

Abstract

Even as recent as several hundred years ago, the general function of the coronary vascular system was largely unknown. Today, it is well established that the coronary system is a highly variable network of both arteries supplying and veins draining the myocardium of oxygenated and deoxygenated blood, respectively. Due to recent advances in therapeutic technologies, the coronary vascular system has been utilized as a conduit in a variety of biomedical applications, e.g., cardiac resynchronization therapy. Additionally, symptomatic diseases such as coronary artery disease can be alleviated with stenting or coronary artery bypass grafts. It is well accepted that a comprehensive understanding of the geometric anatomical characteristics of the coronary system will allow for future medical devices to be engineered to more successfully deliver novel therapies to a greater variety of cardiac patients.

Keywords

Coronary arteries Coronary veins Venous valves Stents Transvenous pacing leads 

Supplementary material

Movie 8.1. This movie illustrates a semitransparent heart as it rotates about its vertical axis. The path of the coronary sinus is highlighted during the first portion of the movie. The three leads implanted during cardiac resynchronization therapy are shown and labeled (MPEG 4,511 KB)

Movie 8.2. This movie is an example of a valve covering a venous contributor ostia (MPEG 860 KB)

Movie 8.3. This movie shows a venogram in an isolated heart. It illustrates a catheter cannulating the coronary sinus ostium, then switches to a fluoroscopic view of the heart, where the coronary veins become opaque as a contrast agent is injected (MPEG 7,187 KB)

145597_3_En_8_MOESM4_ESM.avi (236.7 mb)
Movie 8.4. Stent implantation procedure. A guide wire is delivered through the left coronary ostium to the LAD. A CordisBx Velocity Rx® balloon expandable stent (4.0 mm inner diameter, 23 mm length) is then advanced over the guide wire. The stent is deployed by inflating the balloon to the manufacturer’s recommended pressure. The catheter is removed and the fiberscope, which is positioned distal to the stent, is advanced retrograde through the stent. Three-dimensional anatomical reconstructions using contrast-computed tomography scans and MIMICs Software (Materialise, Leuven, Belgium) are shown to visualize the stent’s placement in the LAD relative to the other major coronary arteries (MPEG 242,376 KB)

Movie 8.5. This animated movie depicts coronary sinus cannulation and lead placement in basal, midventricular, and apical locations during a biventricular pacing implant procedure (MPEG 3,959 KB)

Movie 8.6. 3D reconstruction of contrast-computed tomography images for the coronary arterial and venous systems (MP4 1,141 KB)

References

  1. 1.
    Harris CR (1973) The heart and the vascular system. In: Ancient Greek medicine; from Alcmeon to Galen. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Phillips R The heart and circulatory system. http://www.accessexcellenceorg/AE/AEC/CC/heart_backgroundphp. Accessed 05 May 2008
  3. 3.
    Kajiya F, Kimura A, Hiramatsu O, Ogasawara Y, Tsujioka K (1993) Coronary venous flow. In: Hirakawa, Rothe, Shoukas, Tyberg (eds) Veins, their functional role in the circulation. Springer-Verlag, TokyoGoogle Scholar
  4. 4.
    Alexander R, Schlant R, Fuster V, O’Rourke R, Roberts R, Sonnenblick E (1999) Hurst’s the heart. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    von Ludinghausen M (2003) The clinical anatomy of coronary arteries. Adv Anat Embryol Cell Biol 167:1–111Google Scholar
  6. 6.
    Williams P, Bannister L, Berry M (1995) Gray’s anatomy. Churchill Livingston, LondonGoogle Scholar
  7. 7.
    Loukas M, Sharma A, Blaak C, Sorenson E, Mian A (2013) The clinical anatomy of the coronary arteries. J Cardiovasc Transl Res 6:197–207PubMedGoogle Scholar
  8. 8.
    Patel S (2008) Normal and anomalous anatomy of the coronary arteries. Semin Roentgenol 43:100–112PubMedGoogle Scholar
  9. 9.
    Angelini P (1989) Normal and anomalous coronary arteries, definitions and classification. Am Heart J 117:418–434PubMedGoogle Scholar
  10. 10.
    James T (1961) Anatomy of the coronary arteries. Paul B Hoeber, New YorkGoogle Scholar
  11. 11.
    Yamanaka O, Hobbs R (1990) Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn 21:28–40PubMedGoogle Scholar
  12. 12.
    Vlodaver Z, Neufeld H, Edwards J (1975) Coronary arterial variations in the normal heart and in congenital heart disease. Academic, New YorkGoogle Scholar
  13. 13.
    Koizumi M, Kawai K et al (2002) Anatomical study of the left single coronary artery with special reference to the various distribution patterns of bilateral coronary arteries. Ann Anat 182:549–557Google Scholar
  14. 14.
    Frescura C, Basso C, Thiene G et al (1998) Anomalous origin of coronary arteries and risk of sudden death, a study based on an autopsy population of congenital heart disease. Hum Pathol 29:689–695PubMedGoogle Scholar
  15. 15.
    Zimmermann E, Schnapauff D, Dewey M (2008) Cardiac and coronary anatomy in computed tomography. Semin Ultrasound CT MR 29:176–181PubMedGoogle Scholar
  16. 16.
    Pelliccia A (2001) Congenital coronary artery anomalies in young patients, new perspectives for timely identification. J Am Coll Cardiol 37:598–600PubMedGoogle Scholar
  17. 17.
    Manghat N, Morgan-Hughes G, Marshall A et al (2005) Multidetector row computed tomography, imaging congenital coronary artery anomalies in adults. Heart 91:1515–1522PubMedCentralPubMedGoogle Scholar
  18. 18.
    Earls J (2006) Coronary artery anomalies. Tech Vasc Interv Radiol 9:210–217PubMedGoogle Scholar
  19. 19.
    Frommelt P, Frommelt M (2004) Congenital coronary artery anomalies. Pediatr Clin North Am 51:1273–1288PubMedGoogle Scholar
  20. 20.
    Koneru J, Sammual A, Joshi M, Hamden A, Shamoon F, Bikkina M (2011) Coronary anomaly and coronary artery fistula as cause of angina pectoris with literature review. Case Rep Vasc Med 2011:486187PubMedCentralPubMedGoogle Scholar
  21. 21.
    Lowe J, Oldham H Jr, Sabiston D Jr (1981) Surgical management of congenital coronary artery fistulas. Ann Surg 194:373–380PubMedCentralPubMedGoogle Scholar
  22. 22.
    Jung Y, Kim H, Yoon C (2012) Severe form of persistent Thebesian veins presenting as ischemic heart disease. Korean Circ J 42:714–717PubMedCentralPubMedGoogle Scholar
  23. 23.
    Spindola-Franco H, Grose R, Solomon N (1983) Dual left anterior descending coronary artery, angiographic description of important variants and surgical implications. Am Heart J 105:445–455PubMedGoogle Scholar
  24. 24.
    Vlodaver Z, Edwards J (1971) Pathology of coronary atherosclerosis. Prog Cardiovasc Dis 14:256–274PubMedGoogle Scholar
  25. 25.
    Hutchins G, Moore G, Hatton E (1986) Arterial-venous relationships in the human left ventricular myocardium, anatomic basis for countercurrent regulation of blood flow. Circulation 74:1195–1202PubMedGoogle Scholar
  26. 26.
    Truex R, Angulo A (1952) Comparative study of the arterial and venous systems of the ventricular myocardium with special reference to the coronary sinus. Anat Rec 113:467–491PubMedGoogle Scholar
  27. 27.
    Widmaider E, Raff H, Strang K (2004) Vander, Sherman, Luciano’s human physiology, the mechanisms of body function, 9th edn. McGraw-Hill, BostonGoogle Scholar
  28. 28.
    Spencer J, Anderson S, Iaizzo P (2013) Human coronary venous anatomy for interventions. J Cardiovasc Transl Res 6:208–217PubMedGoogle Scholar
  29. 29.
    Loukas M et al (2009) Cardiac veins, a review of the literature. Clin Anat 22:129–145PubMedGoogle Scholar
  30. 30.
    Ho S, Sanchez-Quintana D, Becker A (2004) A review of the coronary venous system, a road less travelled. Heart Rhythm 1:107–112PubMedGoogle Scholar
  31. 31.
    von Ludinghausen M (2003) The venous drainage of the human myocardium. Adv Anat Embryol Cell Biol 168:1–104Google Scholar
  32. 32.
    Giudici M, Winston S, Kappler J et al (2002) Mapping the coronary sinus and great cardiac vein. Pacing Clin Electrophysiol 25:414–419PubMedGoogle Scholar
  33. 33.
    Hood W Jr (1968) Regional venous drainage of the human heart. Br Heart J 30:105–109PubMedCentralPubMedGoogle Scholar
  34. 34.
    Silver M, Rowley N (1988) The functional anatomy of the human coronary sinus. Am Heart J 115:1080–1084PubMedGoogle Scholar
  35. 35.
    Adatia I, Gittenberger-de A (1995) Unroofed coronary sinus and coronary sinus orifice atresia, implications for management of complex congenital heart disease. J Am Coll Cardiol 25:948–953PubMedGoogle Scholar
  36. 36.
    Malhotra V, Tewari S, Tewari P, Agarwal S (1980) Coronary sinus and its tributaries. Anat Anz 148:331–332PubMedGoogle Scholar
  37. 37.
    Ratajczyk-Pakalaska E (1990) The coronary venous anatomy. In: Myocardial perfusion, reperfusion, coronary venous retroperfusion. Springer, New York, pp 51–92Google Scholar
  38. 38.
    El-Maasarany S, Ferrett C, Firth A, Sheppard M, Henin M (2005) The coronary sinus conduit function, anatomical study (relationship to adjacent structures). Europace 7:475–481PubMedGoogle Scholar
  39. 39.
    Vlodaver D, Amplatz M, Burchell M, Edwards M (1976) Coronary heart disease, clinical angiographic, and pathologic profiles. Springer, New YorkGoogle Scholar
  40. 40.
    Roberts J (1958) Arteries, veins, and lymphatic vessels of the heart. In: Development and structure of the cardiovascular system. McGraw-Hill, New York, pp 85–118Google Scholar
  41. 41.
    Kawashima T, Sato K, Sato F, Sasaki H (2003) An anatomical study of the human cardiac veins with special reference to the drainage of the great cardiac vein. Ann Anat 185:535–542PubMedGoogle Scholar
  42. 42.
    Maros T, Racz L, Plugor S, Maros T (1983) Contributions to the morphology of the human coronary sinus. Anat Anz 154:133–144PubMedGoogle Scholar
  43. 43.
    Singh J, Houser S, Heist E, Ruskin J (2005) The coronary venous anatomy, a segmental approach to aid cardiac resynchronization therapy. J Am Coll Cardiol 46:68–74PubMedGoogle Scholar
  44. 44.
    Maric I, Bobinac D, Ostojic L, Petkovic M, Dujmovic M (1996) Tributaries of the human and canine coronary sinus. Acta Anat (Basel) 156:61–69Google Scholar
  45. 45.
    McAlpine W (1983) Heart and coronary arteries, an anatomical atlas for clinical diagnosis, radiological investigation, and surgical treatment. Springer, New YorkGoogle Scholar
  46. 46.
    Ortale J, Gabriel E, Iost C, Marquez C (2001) The anatomy of the coronary sinus and its tributaries. Surg Radiol Anat 23:15–21PubMedGoogle Scholar
  47. 47.
    Sun Y, Arruda M, Otomo K et al (2002) Coronary sinus-ventricular accessory connections producing posteroseptal and left posterior accessory pathways, incidence and electrophysiological identification. Circulation 106:1362–1367PubMedGoogle Scholar
  48. 48.
    von Ludinghausen M (1990) Microanatomy of the human coronary sinus and its major tributaries. In: Myocardial perfusion, reperfusion, coronary venous reperfusion. Steinkopff Verlag, Darmstadt, pp 93–122Google Scholar
  49. 49.
    Pejkovic B, Bogdanovic D (1992) The great cardiac vein. Surg Radiol Anat 14:23–28PubMedGoogle Scholar
  50. 50.
    Bales G (2004) Great cardiac vein variations. Clin Anat 17:436–443PubMedGoogle Scholar
  51. 51.
    Gerber T, Sheedy P, Bell M et al (2001) Evaluation of the coronary venous system using electron beam computed tomography. Int J Cardiovasc Imaging 17:65–75PubMedGoogle Scholar
  52. 52.
    Gilard M, Mansourati J, Etienne Y et al (1998) Angiographic anatomy of the coronary sinus and its tributaries. Pacing Clin Electrophysiol 21:2280–2284PubMedGoogle Scholar
  53. 53.
    Schaffler G, Groell R, Peichel K, Rienmuller R (2000) Imaging the coronary venous drainage system using electron-beam CT. Surg Radiol Anat 22:35–39PubMedGoogle Scholar
  54. 54.
    Schumacher B, Tebbenjohanns J, Pfieffer D, Omran H, Jung W, Luderitz B (1995) Prospective study of retrograde coronary venography in patients with posteroseptal and left-sided accessory atrioventricular pathways. Am Heart J 130:1031–1039PubMedGoogle Scholar
  55. 55.
    Jongbloed M et al (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45:749–753PubMedGoogle Scholar
  56. 56.
    Pina J (1975) Morphological study on the human anterior cardiac veins, venae cordis anteriores. Acta Anat 92:145–159PubMedGoogle Scholar
  57. 57.
    Mierzwa J (1975) Variations of the anterior cardiac veins and their orifices in the right atrium in man. Folia Morphol 34:125–132Google Scholar
  58. 58.
    Ansari A (2001) Anatomy and clinical significance of ventricular Thebesian veins. Clin Anat 14:102–110PubMedGoogle Scholar
  59. 59.
    Grant R (1929) Observations on the anatomy of the Thebesian vessels of the heart. Heart 15:103–123Google Scholar
  60. 60.
    Mochizuki S (1933) Vv cordis. In: Das venensystem der Japaner. Kenkyusha, Kioto, pp 41–64Google Scholar
  61. 61.
    Bergman R, Thompson S, Saadeh F (1988) Absence of the coronary sinus. Anat Anz 166:9–12PubMedGoogle Scholar
  62. 62.
    Parsonnet V (1953) The anatomy of the veins of the human heart with special reference to normal anastomotic channels. J Med Soc N J 50:446–452PubMedGoogle Scholar
  63. 63.
    Anderson S, Quill J, Iaizzo P (2008) Venous valves within left ventricular coronary veins. J Interv Card Electrophysiol 23:95–99PubMedGoogle Scholar
  64. 64.
    Buirski G et al (1986) Superior vena caval abnormalities, their occurrence rate, associated cardiac abnormalities and angiographic classification in a pediatric population with congenital heart disease. Clin Radiol 37:131–138PubMedGoogle Scholar
  65. 65.
    Pahwa R, Kumar A (2003) Persistent left superior vena cava, an intensivist’s experience and review of the literature. South Med J 96:528–529PubMedGoogle Scholar
  66. 66.
    von Ludinghausen M (1987) Clinical anatomy of cardiac veins, Vv cardiacae. Surg Radiol Anat 9:159–168Google Scholar
  67. 67.
    Gerlis L et al (1984) Coronary sinus orifice atresia and persistent left superior vena cava: a report of two cases, one associated with atypical coronary artery thrombosis. Br Heart J 52:648–653PubMedCentralPubMedGoogle Scholar
  68. 68.
    Harris W (1960) A case of bilateral superior venae cavae with a closed coronary sinus. Thorax 15:172–173PubMedCentralPubMedGoogle Scholar
  69. 69.
    Sahinoglu K et al (1994) Human persistent left superior vena cava with doubled coronary sinus. Ann Anat 176:451–454PubMedGoogle Scholar
  70. 70.
    Mohl W (1994) Basic considerations and techniques in coronary sinus interventions. In: Coronary sinus interventions in cardiac surgery. R G Landes Company, Austin, pp 1–10Google Scholar
  71. 71.
    Junqueira LC, Kelley R (1998) Basic histology. Lange, Stamford AppletonGoogle Scholar
  72. 72.
    Kessel R (1998) Basic medical histology, the biology of cells, tissues, and organs. Oxford University Press, New YorkGoogle Scholar
  73. 73.
    Baroldi G, Mantero O, Scomazzoni G (1956) The collaterals of the coronary arteries in normal and pathologic hearts. Circ Res 4:223–229PubMedGoogle Scholar
  74. 74.
    Kitzman D, Edwards W (1990) Age-related changes in the anatomy of the normal human heart. J Gerontol 45:M33–M39PubMedGoogle Scholar
  75. 75.
    Moberg A (1967) Anatomical and functional aspects of extracardial anastomoses to the coronary arteries. Pathol Microbiol (Basel) 30:689–694Google Scholar
  76. 76.
    Waller B et al (1994) Anatomy of the heart. In: Hurst’s the heart. McGraw-Hill, New York, pp 59–112Google Scholar
  77. 77.
    Leon A (2003) Cardiac resynchronization therapy devices, patient management and follow-up strategies. Rev Cardiovasc Med 4(Suppl 2):S38–S46PubMedGoogle Scholar
  78. 78.
    Oginosawa Y, Abe H, Nakashima Y (2005) Prevalence of venous anatomic variants and occlusion among patients undergoing implantation of transvenous leads. Pacing Clin Electrophysiol 28:425–428PubMedGoogle Scholar
  79. 79.
    Raman S, Morford R, Matthew N et al (2004) Rotational X-ray coronary angiography. Catheter Cardiovasc Interv 63:201–207PubMedGoogle Scholar
  80. 80.
    Maddux J, Wink O, Messenger J et al (2004) Randomized study of the safety and clinical utility of rotational angiography versus standard angiography in the diagnosis of coronary artery disease. Catheter Cardiovasc Interv 62:167–174PubMedGoogle Scholar
  81. 81.
    Coatrieux J, Hernandez A, Mabo P, Garreau M, Haigon, P (2005) Transvenous path finding in cardiac resynchronization therapy. In: Functional imaging and modeling of heart proceedings, pp 236–245Google Scholar
  82. 82.
    Ansalone G, Giannantoni P, Ricci R, Trambaiolo P, Fedele F, Santini M (2002) Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol 39:489–499PubMedGoogle Scholar
  83. 83.
    Cazeau S, Leclercq C, Lavergne T et al (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880PubMedGoogle Scholar
  84. 84.
    Lambiase P, Rinaldi A, Hauck J et al (2004) Non-contact left ventricular endocardial mapping in cardiac resynchronisation therapy. Heart 90:44–51PubMedCentralPubMedGoogle Scholar
  85. 85.
    Minz G, Painte J, Pichard A et al (1995) Atherosclerosis in angiographically “normal” coronary artery reference segments, an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 25:1479–1485Google Scholar
  86. 86.
    Iqbal J, Gunn J, Serruys P (2013) Coronary stents, historical development, current status and future directions. Br Med Bull 106:193–211PubMedGoogle Scholar
  87. 87.
    Puri R, Worthley M, Nicholls S (2011) Intravascular imaging of vulnerable coronary plaque, current and future concepts. Nat Rev Cardiol 8:131–139PubMedGoogle Scholar
  88. 88.
    de Korte C, van der Steen A, Cespedes E, Pasterkamp G (1998) Intravascular ultrasound elastrography in human arteries, initial experience in vitro. Ultrasound Med Biol 24:401–408PubMedGoogle Scholar
  89. 89.
    Bezerra H, Costa M, Guagliumi G, Rollins A, Simon D (2009) Intracoronary optical coherence tomography, a comprehensive review clinical and research applications. JACC Cardiovasc Interv 2:1035–1046PubMedCentralPubMedGoogle Scholar
  90. 90.
    Cassis L, Lodder R (1993) Near-IR imaging of atheromas in living arterial tissue. Anal Chem 65:1247–1256PubMedGoogle Scholar
  91. 91.
    Jaross W, Neumeister V, Lattke P, Schuh D (2008) Determination of cholesterol in atherosclerotic plaques using near infrared spectroscopy system. JACC Cardiovasc Imaging 147:327–337Google Scholar
  92. 92.
    Hoffmann U, Brady T, Muller J (2003) Use of new imaging techniques to screen for coronary artery disease. Circulation 108:e50–e53PubMedGoogle Scholar
  93. 93.
    Bluemke D, Achenbach S, Budoff M, Gerber TG et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography. Circulation 118:1–21Google Scholar
  94. 94.
    Kantarci M, Karcaaltincaba SD, Karabulut M, Erol N, Yalcin M, Tatli A (2012) Clinical situation in which coronary CT angiography confers superior diagnostic information compared with coronary angiography. Diagn Interv Radiol 18:261–269PubMedGoogle Scholar
  95. 95.
    Earls J, Berman E, Urban B et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique, improved image quality and reduced radiation dose. Radiology 246:742–775PubMedGoogle Scholar
  96. 96.
    Wyler von Ballmoos M, Haring B, Juillerat R, Alkadhi H (2011) Meta-analysis, diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 154:413–420Google Scholar
  97. 97.
    Foo T, Ho V, Saranathan M et al (2005) Feasibility of integrating high-spatial-resolution 3D breath-hold coronary MR angiography with myocardial perfusion and viability examinations. Radiology 235:1025–1030PubMedGoogle Scholar
  98. 98.
    Al Moudi M, Sun Z, Lenzo N (2011) Diagnostic value of SPECT, PET and PET/CT in the diagnosis of coronary artery disease, a systematic review. Biomed Imaging Interv J 7, e9PubMedCentralPubMedGoogle Scholar
  99. 99.
    Mc Ardle B, Dowsley T, deKemp R et al (2012) Does Rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease. J Am Coll Cardiol 60:1828–1837PubMedGoogle Scholar
  100. 100.
    Ormiston J, Serruys P (2009) Bioabsorbable coronary stents. Circ Cardiovasc Interv 2:255–260PubMedGoogle Scholar
  101. 101.
    Jain A, Smith E, Rothman M (2006) The coronary venous system, an alternative route of access to the myocardium. J Invasive Cardiol 18:563–568PubMedGoogle Scholar
  102. 102.
    Prasad A, Rihal C, Lennon R, Wiste H, Singh M, Holmes D Jr (2007) Trends in outcomes after percutaneous coronary intervention for chronic total occlusions, a 25-year experience from the Mayo Clinic. J Am Coll Cardiol 49:1611–1618PubMedGoogle Scholar
  103. 103.
    Iakovou I, Ge L, Colombo A (2005) Contemporary stent treatment of coronary bifurcations. J Am Coll Cardiol 46:1446–1455PubMedGoogle Scholar
  104. 104.
    Colomba A, Mikhail G, Michev I et al (2005) Treating chronic total occlusions using subintimal tracking and reentry, the STAR technique. Catheter Cardiovasc Interv 64:407–411Google Scholar
  105. 105.
    Weisz G, Moses J (2007) New percutaneous approaches for chronic total occlusion of coronary arteries. Expert Rev Cardiovasc Ther 5:231–241PubMedGoogle Scholar
  106. 106.
    Horvath K (2008) Transmyocardial laser revascularization. J Card Surg 23:266–276PubMedCentralPubMedGoogle Scholar
  107. 107.
    Oskui PM et al (2014) Improved myocardial perfusion after transmyocardial laser revascularization in a patient with microvascular coronary artery disease. SAGE Open Medical Case Reports 2Google Scholar
  108. 108.
    Cappato R, Schluter M, Weiss C et al (2007) Mapping of the Coronary Sinus and Great Cardiac Vein Using a 2-French Electrode Catheter and a Right Femoral Approach. J Cardio Electrophys 8:371–376Google Scholar
  109. 109.
    Stellbrink C, Diem B et al (1997) Transcoronary venous radiofrequency catheter ablation of ventricular tachycardia. J Cardiovasc Electrophysiol 8:916–921PubMedGoogle Scholar
  110. 110.
    Dosdall D, Rothe D, Brandon T, Sweeney J (2004) Effect of rapid biphasic shock subpulse switching on ventricular defibrillation thresholds. J Cardiovasc Electrophysiol 15:802–808PubMedGoogle Scholar
  111. 111.
    Huang J, Walcott G, Killingsworth C, Smith W, Kenknight B, Ideker R (2002) Effect of rapid biphasic shock subpulse switching on ventricular defibrillation threshold. Pacing Clin Electrophysiol 25:42–48PubMedGoogle Scholar
  112. 112.
    Nitsch J (1989) Continuous monitoring of coronary perfusion during percutaneous transluminal coronary angioplasty of the left anterior descending artery. J Interv Cardiol 2:205–210Google Scholar
  113. 113.
    Gundry S (1982) A comparison of retrograde cardioplegia versus antegrade cardioplegia in the presence of coronary artery obstruction. Scientific Session of the American Heart Association, DallasGoogle Scholar
  114. 114.
    Miyazaki A, Tadokoro H, Drury J et al (1991) Retrograde coronary venous administration of recombinant tissue-type plasminogen activator, a unique and effective approach to coronary artery thrombolysis. J Am Coll Cardiol 18:613–620PubMedGoogle Scholar
  115. 115.
    Thompson C, Nasseri B, Makower J et al (2003) Percutaneous transvenous cellular cardiomyoplasty: a novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol 41:1964–1971PubMedGoogle Scholar
  116. 116.
    Oesterle S, Reifart N, Hauptmann E et al (2001) Percutaneous in situ coronary venous arterialization, report of the first human catheter-based coronary artery bypass. Circulation 103:2539–2543PubMedGoogle Scholar
  117. 117.
    Barold S (2001) What is cardiac resynchronization therapy? Am J Med 111:224–232PubMedGoogle Scholar
  118. 118.
    Casey C, Knight B (2004) Cardiac resynchronization pacing therapy. Cardiology 101:72–78PubMedGoogle Scholar
  119. 119.
    Daubert J, Ritter P, Le Breton H et al (1998) Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing Clin Electrophysiol 21:239–245PubMedGoogle Scholar
  120. 120.
    Walker S, Levy T, Rex D et al (2000) Initial United Kingdom experience with the use of permanent, biventricular pacemakers, implantation procedure and technical considerations. Europace 2:233–239PubMedGoogle Scholar
  121. 121.
    Gasparini M, Mantice M, Galimberti P et al (2003) Is the left ventricular lateral wall the best lead implantation site for cardiac resynchronization therapy? Pacing Clin Electrophysiol 26:162–168PubMedGoogle Scholar
  122. 122.
    Stevenson W, Sweeney M (2004) Single site left ventricular pacing for cardiac resynchronization. Circulation 109:1694–1696PubMedGoogle Scholar
  123. 123.
    Valls-Bertault V, Mansourati J, Gilard M, Etienne Y et al (2001) Adverse events with transvenous left ventricular pacing in patients with severe heart failure, early experience from a single centre. Europace 3:60–63PubMedGoogle Scholar
  124. 124.
    Abraham W et al (2004) Effects of cardiac resynchronization on disease progression in patients with left ventricular systolic dysfunction, an indication for an implantable cardioverter-defibrillator and mildly symptomatic chronic heart failure. Circulation 110:2864–2868PubMedGoogle Scholar
  125. 125.
    Alonso C, Leclercq C, d’Allonnes F et al (2001) Six year experience of transvenous left ventricular lead implantation for permanent biventricular pacing in patients with advanced heart failure, technical aspects. Heart 86:405–410PubMedCentralPubMedGoogle Scholar
  126. 126.
    Rossillo A et al (2004) Impact of coronary sinus lead position on biventricular pacing, mortality and echocardiographic evaluation during long-term follow-up. J Cardiovasc Electrophysiol 15:1120–1125PubMedGoogle Scholar
  127. 127.
    Conti C (2006) Cardiac resynchronization therapy for chronic heart failure, why does it not always work? Clin Cardiol 29:335–336PubMedGoogle Scholar
  128. 128.
    Yu C, Wing-Hong F, Zhang Q, Sanderson J (2005) Understanding nonresponders of cardiac resynchronization therapy – current and future perspectives. J Cardiovasc Electrophysiol 16:1117–1124PubMedGoogle Scholar
  129. 129.
    Mair H, Sachweh J, Meuris B et al (2005) Surgical epicardial left ventricular lead versus coronary sinus lead placement in biventricular pacing. Eur J Cardiothorac Surg 27:235–242PubMedGoogle Scholar
  130. 130.
    Fisher J et al (1984) Attempted nonsurgical electrical ablation of accessory pathways via the coronary sinus in the Wolff-Parkinson-White syndrome. J Am Coll Cardiol 4:685–694PubMedGoogle Scholar
  131. 131.
    Haissaguerre M et al (1992) Radiofrequency catheter ablation of left lateral accessory pathways via the coronary sinus. Circulation 86:1464–1468PubMedGoogle Scholar
  132. 132.
    Gaita F, Riccard P, Ferraro A (2002) Cryothermic ablation within the coronary sinus of an epicardial posterolateral pathway. J Cardiovasc Electrophysiol 13:1160–1163PubMedGoogle Scholar
  133. 133.
    Haissaguerre M et al (2007) Impact of catheter ablation of the coronary sinus on paroxysmal or persistent atrial fibrillation. J Cardiovasc Electrophysiol 18:378–386PubMedGoogle Scholar
  134. 134.
    Banai S et al (2007) Coronary sinus reducer stent for the treatment of chronic refractory angina pectoris, a prospective, open label, multicenter, safety feasibility first-in-man study. J Am Coll Cardiol 49:1783–1789PubMedGoogle Scholar
  135. 135.
    Harnek J et al (2011) Transcatheter implantation of the MONARC coronary sinus device for mitral regurgitation, 1 year results from the EVOLUTION phase I study. JACC Cardiovasc Interv 4:115–122PubMedGoogle Scholar
  136. 136.
    Choure A et al (2006) In vivo analysis of the anatomical relationship of coronary sinus to mitral annulus and left circumflex coronary artery using cardiac multidetector computed tomography. J Am Coll Cardiol 15:1938–1945Google Scholar
  137. 137.
    Tacker W, Vanvleet J, Schoenlein W, Janas W et al (1998) Post-mortem changes after lead extraction from the ovine coronary sinus and great cardiac vein. Pacing Clin Electrophysiol 21:296–298PubMedGoogle Scholar
  138. 138.
    De Martino G, Orazi S, Bisignani G et al (2005) Safety and feasibility of coronary sinus left ventricular leads extraction, a preliminary report. J Interv Card Electrophysiol 13:35–38PubMedGoogle Scholar
  139. 139.
    Rickard J, Tarakji K, Cronin E et al (2012) Cardiac venous left ventricular lead removal and reimplantation following device infection. J Cardiovasc Electrophysiol 23:1213–1216PubMedGoogle Scholar
  140. 140.
    Sheldon S, Friedman P, Hayes D et al (2012) Outcomes and predictors of difficulty with coronary sinus lead removal. J Interv Card Electrophysiol 35:93–100PubMedGoogle Scholar
  141. 141.
    Cronin E, Ingelmo C, Rickard J et al (2012) Active fixation mechanism complicates coronary sinus lead extraction and limits subsequent reimplantation targets. J Interv Card Electrophysiol 36:81–86PubMedGoogle Scholar
  142. 142.
    Maytin M, Carillo R, Baltodano P (2012) Multicenter experience with transvenous lead extraction of active fixation coronary sinus leads. Pacing Clin Electrophysiol 35:641–647PubMedGoogle Scholar
  143. 143.
    Anderson S, Hill A, Iaizzo P (2009) Microanatomy of human left ventricular coronary veins. Anat Rec 292:23–28Google Scholar
  144. 144.
    Dodge J Jr, Brown B, Bolson E (1992) Lumen diameter of normal human coronary arteries: influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86:232–246PubMedGoogle Scholar
  145. 145.
    Zubaid M, Buller C, Mancini G (2002) Normal angiographic tapering of the coronary arteries. Can J Cardiol 18:973–980PubMedGoogle Scholar
  146. 146.
    Ono T, Shimohara Y, Okada K, Irino S (1986) Scanning electron microscopic studies on microvascular architecture of human coronary vessels by corrosion casts, normal and focal necrosis. Scan Electron Microsc 263–270Google Scholar
  147. 147.
    Hellerstein H, Orbison J (1951) Anatomic variations of the orifice of the human coronary sinus. Circulation 3:514–523PubMedGoogle Scholar
  148. 148.
    Potkin B, Roberts W (1987) Size of coronary sinus at necropsy in subjects without cardiac disease and in patients with various cardiac conditions. Am J Cardiol 60:1418–1421Google Scholar
  149. 149.
    Spencer J, Prahl G, Iaizzo P (2014) The prevalence of coronary sinus and left circumflex artery overlap in relation to the mitral valve. J Interv Cardiol 27:308–316PubMedGoogle Scholar
  150. 150.
    Ge J, Erbel R, Gerger T et al (1994) Intravascular ultrasound imaging of angiographically normal coronary arteries: a prospective study in vivo. Br Heart J 71:572–578PubMedCentralPubMedGoogle Scholar
  151. 151.
    Piffer C, Piffer M, Zoretto N (1990) Anatomic data of the human coronary sinus. Anat Anz 170:21–29PubMedGoogle Scholar
  152. 152.
    Felle P, Bannigan J (1994) Anatomy of the valve of the coronary sinus (Thebesian valve). Clin Anat 7:10–12Google Scholar
  153. 153.
    Hill A, Ahlberg S, Wilkoff B, Iaizzo P (2006) Dynamic obstruction to coronary sinus access, the Thebesian valve. Heart Rhythm 3:1240–1241PubMedGoogle Scholar
  154. 154.
    Hill A, Coles J Jr, Sigg D, Laske T, Iaizzo P (2003) Images of the human coronary sinus ostium obtained from isolated working hearts. Ann Thorac Surg 76:2108PubMedGoogle Scholar
  155. 155.
    Jatene M, Jatene F, Costa R et al (1991) Anatomical study of the coronary sinus valve – Thebesius valve. Chest 100(Suppl):90SGoogle Scholar
  156. 156.
    Spencer J, Larson A, Drake R, Iaizzo P (2014) A detailed assessment of the human coronary venous system using contrast computed tomography of perfusion-fixed specimens. Heart Rhythm 11:282–288PubMedGoogle Scholar
  157. 157.
    Andserson S, Hill A, Iaizzo P (2007) Venous valves, unseen obstructions to coronary access. J Interv Card Electrophysiol 19:165–166Google Scholar
  158. 158.
    Achenbach S, Kessler W, Moshage W et al (1997) Visualization of the coronary arteries in three-dimensional reconstructions using respiratory gated magnetic resonance imaging. Coron Artery Dis 8:441–448PubMedGoogle Scholar
  159. 159.
    Achenbach S, Ulzheimer S, Baum U et al (2000) Noninvasive coronary angiography by retrospectively ECG-gated multislice spiral CT. Circulation 102:2823–2828PubMedGoogle Scholar
  160. 160.
    Li D, Kaushikkar S, Haacke E et al (1996) Coronary arteries, three-dimensional MR imaging with retrospective respiratory gating. Radiology 201:857–863PubMedGoogle Scholar
  161. 161.
    Gradus-Pizlo I, Feigenbaum H (2002) Imaging of the left anterior descending coronary artery by high-frequency transthoracic and epicardial echocardiography. Am J Cardiol 90:28L–31LPubMedGoogle Scholar
  162. 162.
    Kim W, Stuber M, Bornert P, Kissinger K et al (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 299:296Google Scholar
  163. 163.
    Basso C, Thiene G (2005) Adipositas cordis, fatty infiltration of the right ventricle, and arrhythmogenic right ventricular cardiomyopathy. Cardiovasc Pathol 14:37–41PubMedGoogle Scholar
  164. 164.
    Corradi D, Maestri R, Callegari S et al (2004) The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol 13:313–316PubMedGoogle Scholar
  165. 165.
    Hangertner J, Marley N, Whitehead A, Thomas A, Davies M (1985) The assessment of cardiac hypertrophy at autopsy. Histopathology 9:1295–1306Google Scholar
  166. 166.
    Reiner L, Mazzoleni A, Rodriguez F, Freudenthal R (1959) The weight of the human heart. I. Normal cases. AMA Arch Pathol 68:58–73PubMedGoogle Scholar
  167. 167.
    Shirani J, Berezowski K, Roberts W (1995) Quantitative measurement of normal and excessive (cor adiposum) subepicardial adipose tissue, its clinical significance, and its effect on electrocardiographic QRS voltage. Am J Cardiol 76:414–418PubMedGoogle Scholar
  168. 168.
    Sons H, Hoffmann V (1986) Epicardial fat cell size, fat distribution and fat infiltration of the right and left ventricle of the heart. Anat Anz 161:355–373PubMedGoogle Scholar
  169. 169.
    Rokey R, Mulvagh S, Cheirif J, Mattox K, Johnston D (1989) Lipomatous encasement and compression of the heart, antemortem diagnosis by cardiac nuclear magnetic resonance imaging and catheterization. Am Heart J 117:952–953PubMedGoogle Scholar
  170. 170.
    Anderson S, Iaizzo P (2010) Effect of pacing lead positions and venous microanatomy on pacing parameters. J Electrocardiol 43:136–141PubMedGoogle Scholar
  171. 171.
    Mao S, Shinbane J, Girsky M et al (2005) Coronary venous imaging with electron beam computed tomographic angiography, three-dimensional mapping and relationship with coronary arteries. Am Heart J 150:315–322PubMedGoogle Scholar
  172. 172.
    Spencer J, Sundaram C, Iaizzo P (2014) The relative anatomy of the coronary arterial and venous systems: implications for coronary interventions. Clin Anat 27:1023–1029PubMedGoogle Scholar
  173. 173.
    Maselli D et al (2006) Percutaneous mitral annuloplasty, an anatomic study of human coronary sinus and its relation with mitral valve annulus and coronary arteries. Circulation 114:377–380PubMedGoogle Scholar
  174. 174.
    Hansky B et al (2007) Implantation of active fixation leads in coronary veins for left ventricular stimulation, report of five cases. Pacing Clin Electrophysiol 30:44–49PubMedGoogle Scholar
  175. 175.
    Nagele H et al (2007) First experience with a new active fixation coronary sinus lead. Europace 9:437–441PubMedGoogle Scholar
  176. 176.
    Bates R, Toscano M, Balderman S, Anagnostopoulos C (1977) The cardiac veins and retrograde coronary venous perfusion. Ann Thorac Surg 23:83–90PubMedGoogle Scholar
  177. 177.
    Oesterle S, Reifart N, Hayase M et al (2003) Catheter-based coronary bypass, a development update. Catheter Cardiovasc Interv 58:212–218PubMedGoogle Scholar
  178. 178.
    Schoger J et al (2009) Percutaneous mitral annuloplasty for functional mitral regurgitation, result of the CARILLON Mitral Annuloplasty Device European Union Study. Circulation 120:326–333Google Scholar
  179. 179.
    Siminiak T et al (2012) Treatment of functional mitral regurgitation by percutaneous annuloplasty, results of the TITAN trial. Eur J Heart Fail 14(8):931–938PubMedCentralPubMedGoogle Scholar
  180. 180.
    Machaalany J et al (2013) Treatment of functional mitral valve regurgitation with the permanent percutaneous transvenous mitral annuloplasty system. Am Heart J 165:761–769PubMedGoogle Scholar
  181. 181.
    Wong K, Lim C, Sadarim P (2011) High incidence of acute sub-clinical circumflex artery ‘injury’ following mitral isthmus ablation. Eur Heart J 32:1881–1890PubMedGoogle Scholar
  182. 182.
    Biffi M et al (2009) Phrenic stimulation, a challenge for cardiac resynchronization therapy. Circ Arrhythm Electrophysiol 2:402–410PubMedGoogle Scholar
  183. 183.
    Yokokawa M et al (2011) Impact of mitral isthmus anatomy on the likelihood of achieving linear block in patients undergoing catheter ablation of persistent atrial fibrillation. Heart Rhythm 8:1404–1410PubMedGoogle Scholar
  184. 184.
    Becker A (2004) Left atrial isthmus, anatomic aspects relevant for linear catheter ablation procedures in humans. J Cardiovasc Electrophysiol 15:809–812PubMedGoogle Scholar
  185. 185.
    Wong K et al (2011) Larger coronary sinus diameter predicts the need for epicardial delivery during mitral isthmus ablation. Europace 13:555–561PubMedGoogle Scholar
  186. 186.
    Wong K, Betts T (2012) A review of mitral isthmus ablation. Indian Pacing Electrophysiol J 12:152–170PubMedCentralPubMedGoogle Scholar
  187. 187.
    Abbara S et al (2005) Noninvasive evaluation of cardiac veins with 16-MDCT angiography. AJR Am J Roentgenol 185:1001–1006PubMedGoogle Scholar
  188. 188.
    Muhlenbruch G et al (2005) Imaging of the cardiac venous system, comparison of MDCT and conventional angiography. AJR Am J Roentgenol 185:1252–1257PubMedGoogle Scholar
  189. 189.
    Tada H et al (2005) Three-dimensional visualization of the coronary venous system using multidetector row computed tomography. Circ J 69:165–170PubMedGoogle Scholar
  190. 190.
    Van de Veire N et al (2006) Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 48:1832–1838PubMedGoogle Scholar
  191. 191.
    Manzke R et al (2011) Assessment of the coronary venous system in heart failure patients by blood pool agent enhanced whole-heart MRI. Eur Radiol 21:799–806PubMedGoogle Scholar
  192. 192.
    Ludinghausen M (2003) The clinical anatomy of coronary arteries. Springer, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Julianne H. Spencer
    • 1
    • 2
    • 3
    Email author
  • Sara E. Anderson
    • 1
    • 2
  • Ryan Lahm
    • 3
  • Paul A. Iaizzo
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of SurgeryUniversity of MinnesotaMinneapolisUSA
  3. 3.Medtronic, Inc.MinneapolisUSA

Personalised recommendations