Abstract
Early pregnancy losses can be divided into spontaneous abortion, ectopic pregnancies, and gestational trophoblastic disease. Much of the chapter is devoted to spontaneous abortion as it is the area that generally concerns perinatal pathologists more than the other two topics. Miscarriage is the most common complication of pregnancy. The term miscarriage is preferred to spontaneous abortion. Its definition, etiology, pathology, and pathogenesis are detailed. Differentiating between miscarriage and hydatidiform molar villous tissue is discussed, as are the practical considerations of differentiating between partial and complete moles and between molar triploidy and nonmolar triploidy.
Keywords
Spontaneous abortion Miscarriage Etiology Parental factors Chromosomal abnormalities Congenital anatomical abnormalities Infection Maternal factors Occupational and environmental factors Pathology Placentation Angiogenesis Immunology Ectopic pregnancy Gestational trophoblastic disease Hydatidiform mole TriploidyReferences
- 1.Beard RW, Mowbray JF, Pinker GD. Miscarriage or abortion. Lancet. 1985;2:1122–3.PubMedGoogle Scholar
- 2.World Health Organization. Spontaneous and induced abortion, Technical report series, vol. 461. Geneva: WHO; 1970.Google Scholar
- 3.Bourne T, Bottomley C. When is a pregnancy nonviable and what criteria should be used to define miscarriage? Fertil Steril. 2012;98:1091–6.PubMedGoogle Scholar
- 4.Jurkovic D. Re: limitations of current definitions of miscarriage using mean gestational sac diameter and crown-rump length measurements: a multicenter observational study. Ultrasound Obstet Gynecol. 2012;39:361.PubMedGoogle Scholar
- 5.Practice Committee of American Society of Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2013;99:63.Google Scholar
- 6.Goldzieher JW, Benigno BB. The treatment of threatened and recurrent abortion; a critical review. Am J Obstet Gynecol. 1958;75:1202–14.PubMedGoogle Scholar
- 7.Oksenberg JR, Persitz E, Amar A, Schenker J, Segal S, Nelken D, et al. Mixed lymphocyte reactivity nonresponsiveness in couples with multiple spontaneous abortions. Fertil Steril. 1983;39:525–9.PubMedGoogle Scholar
- 8.Wilcox AJ, Weinberg CR, O’Connor JF, Baird DD, Schlatterer JP, Canfield RE, et al. Incidence of early loss of pregnancy. N Engl J Med. 1988;319:189–94.PubMedGoogle Scholar
- 9.Rai R, Regan L. Recurrent miscarriage. Lancet. 2006;368:601–11.PubMedGoogle Scholar
- 10.Smith NM. Broadsheet number 56: mechanisms of fetal loss. Pathology. 2000;32:107–15.PubMedGoogle Scholar
- 11.Nybo Andersen AM, Wohlfahrt J, Christens P, Olsen J, Melbye M. Maternal age and fetal loss: population based register linkage study. BMJ. 2000;320:1708–12.PubMedGoogle Scholar
- 12.Leeners B, Geraedts K, Imthurn B, Stiller R. The relevance of age in female human reproduction–current situation in Switzerland and pathophysiological background from a comparative perspective. Gen Comp Endocrinol. 2013;188:166–74.PubMedGoogle Scholar
- 13.Mukherjee S, Velez Edwards DR, Baird DD, Savitz DA, Hartmann KE. Risk of miscarriage among black women and white women in a U.S. Prospective cohort study. Am J Epidemiol. 2013;177:1271–8.PubMedPubMedCentralGoogle Scholar
- 14.de la Rochebrochard E, Thonneau P. Paternal age and maternal age are risk factors for miscarriage; results of a multicentre European study. Hum Reprod. 2002;17:1649–56.PubMedGoogle Scholar
- 15.Nilsen AB, Waldenstrom U, Rasmussen S, Hjelmstedt A, Schytt E. Characteristics of first-time fathers of advanced age: a Norwegian population-based study. BMC Pregnancy Childbirth. 2013;13:29.PubMedPubMedCentralGoogle Scholar
- 16.Slama R, Bouyer J, Windham G, Fenster L, Werwatz A, Swan SH. Influence of paternal age on the risk of spontaneous abortion. Am J Epidemiol. 2005;161:816–23.PubMedGoogle Scholar
- 17.Green DM, Whitton JA, Stovall M, Mertens AC, Donaldson SS, Ruymann FB, et al. Pregnancy outcome of partners of male survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2003;21:716–21.PubMedGoogle Scholar
- 18.Dhillon RK, Hillman SC, Morris RK, McMullan D, Williams D, Coomarasamy A, et al. Additional information from chromosomal microarray analysis (CMA) over conventional karyotyping when diagnosing chromosomal abnormalities in miscarriage: a systematic review and meta-analysis. BJOG. 2014;121:11–21.PubMedGoogle Scholar
- 19.Reddy UM, Page GP, Saade GR. The role of DNA microarrays in the evaluation of fetal death. Prenat Diagn. 2012;32:371–5.PubMedGoogle Scholar
- 20.Warren JE, Silver RM. Genetics of pregnancy loss. Clin Obstet Gynecol. 2008;51:84–95.PubMedGoogle Scholar
- 21.Kwinecka-Dmitriew B, Zakrzewska M, Latos-Bielenska A, Skrzypczak J. Frequency of chromosomal aberrations in material from abortions. Ginekol Pol. 2010;81:896–901.PubMedGoogle Scholar
- 22.Ogasawara M, Aoki K, Okada S, Suzumori K. Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil Steril. 2000;73:300–4.PubMedGoogle Scholar
- 23.Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med. 2005;7:251–63.PubMedGoogle Scholar
- 24.Edwards JH, Yuncken C, Rushton DI, Richards S, Mittwoch U. Three cases of triploidy in man. Cytogenetics. 1967;6:81–104.PubMedGoogle Scholar
- 25.Vorsanova SG, Kolotii AD, Iourov IY, Monakhov VV, Kirillova EA, Soloviev IV, et al. Evidence for high frequency of chromosomal mosaicism in spontaneous abortions revealed by interphase fish analysis. J Histochem Cytochem. 2005;53:375–80.PubMedGoogle Scholar
- 26.Kalousek DK, Barrett IJ, McGillivray BC. Placental mosaicism and intrauterine survival of trisomies 13 and 18. Am J Hum Genet. 1989;44:338–43.PubMedPubMedCentralGoogle Scholar
- 27.Kalousek DK. Current topic: confined placental mosaicism and intrauterine fetal development. Placenta. 1994;15:219–30.PubMedGoogle Scholar
- 28.Hanna CW, McFadden DE, Robinson WP. DNA methylation profiling of placental villi from karyotypically normal miscarriage and recurrent miscarriage. Am J Pathol. 2013;182:2276–84.PubMedGoogle Scholar
- 29.Summers PR. Microbiology relevant to recurrent miscarriage. Clin Obstet Gynecol. 1994;37:722–9.PubMedGoogle Scholar
- 30.Simpson JL, Gray RH, Queenan JT, Barbato M, Perez A, Mena P, et al. Further evidence that infection is an infrequent cause of first trimester spontaneous abortion. Hum Reprod. 1996;11:2058–60.PubMedGoogle Scholar
- 31.Nigro G, Mazzocco M, Mattia E, Di Renzo GC, Carta G, Anceschi MM. Role of the infections in recurrent spontaneous abortion. J Matern-Fetal Neonatal Med. 2011;24:983–9.PubMedGoogle Scholar
- 32.Andersen AM, Vastrup P, Wohlfahrt J, Andersen PK, Olsen J, Melbye M. Fever in pregnancy and risk of fetal death: a cohort study. Lancet. 2002;360:1552–6.PubMedGoogle Scholar
- 33.Hay PE. Bacterial vaginosis and miscarriage. Curr Opin Infect Dis. 2004;17:41–4.PubMedGoogle Scholar
- 34.de Gussem EM, Lausman AY, Beder AJ, Edwards CP, Blanker MH, Terbrugge KG, et al. Outcomes of pregnancy in women with hereditary hemorrhagic telangiectasia. Obstet Gynecol. 2014;123:514–20.PubMedGoogle Scholar
- 35.Hurst BS, Lange SS, Kullstam SM, Usadi RS, Matthews ML, Marshburn PB, et al. Obstetric and gynecologic challenges in women with Ehlers-Danlos syndrome. Obstet Gynecol. 2014;123:506–13.PubMedGoogle Scholar
- 36.Holley JL, Bernardini J, Quadri KH, Greenberg A, Laifer SA. Pregnancy outcomes in a prospective matched control study of pregnancy and renal disease. Clin Nephrol. 1996;45:77–82.PubMedGoogle Scholar
- 37.Canobbio MM, Mair DD, van der Velde M, Koos BJ. Pregnancy outcomes after the Fontan repair. J Am Coll Cardiol. 1996;28:763–7.PubMedGoogle Scholar
- 38.Hamed HO, Ahmed SR, Alzolibani A, Kamal MM, Mostafa MS, Gamal RM, et al. Does cutaneous lupus erythematosus have more favorable pregnancy outcomes than systemic disease? A two-center study. Acta Obstet Gynecol Scand. 2013;92:934–42.PubMedGoogle Scholar
- 39.Clowse ME, Magder LS, Witter F, Petri M. The impact of increased lupus activity on obstetric outcomes. Arthritis Rheum. 2005;52:514–21.PubMedGoogle Scholar
- 40.Meroni PL, di Simone N, Testoni C, D’Asta M, Acaia B, Caruso A. Antiphospholipid antibodies as cause of pregnancy loss. Lupus. 2004;13:649–52.PubMedGoogle Scholar
- 41.Nayar R, Lage JM. Placental changes in a first trimester missed abortion in maternal systemic lupus erythematosus with antiphospholipid syndrome; a case report and review of the literature. Hum Pathol. 1996;27:201–6.PubMedGoogle Scholar
- 42.Blais L, Kettani FZ, Forget A. Relationship between maternal asthma, its severity and control and abortion. Hum Reprod. 2013;28:908–15.PubMedGoogle Scholar
- 43.Tersigni C, Castellani R, de Waure C, Fattorossi A, De Spirito M, Gasbarrini A, et al. Celiac disease and reproductive disorders: meta-analysis of epidemiologic associations and potential pathogenic mechanisms. Hum Reprod Update. 2014;20:582–93.PubMedGoogle Scholar
- 44.van den Boogaard E, Vissenberg R, Land JA, van Wely M, van der Post JA, Goddijn M, et al. Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Hum Reprod Update. 2011;17:605–19.PubMedGoogle Scholar
- 45.dos Santos Silva I, Higgins C, Swerdlow AJ, Laing SP, Slater SD, Pearson DW, et al. Birthweight and other pregnancy outcomes in a cohort of women with pre-gestational insulin-treated diabetes mellitus, Scotland, 1979–95. Diabet Med. 2005;22:440–7.Google Scholar
- 46.Practice Committee of American Society of Reproductive Medicine. The clinical relevance of luteal phase deficiency: a committee opinion. Fertil Steril. 2012;98:1112–7.Google Scholar
- 47.Althuisius SM, Dekker GA. A five century evolution of cervical incompetence as a clinical entity. Curr Pharm Des. 2005;11:687–97.PubMedGoogle Scholar
- 48.Conner SN, Cahill AG, Tuuli MG, Stamilio DM, Odibo AO, Roehl KA, et al. Interval from loop electrosurgical excision procedure to pregnancy and pregnancy outcomes. Obstet Gynecol. 2013;122:1154–9.PubMedPubMedCentralGoogle Scholar
- 49.Sanders JE, Hawley J, Levy W, Gooley T, Buckner CD, Deeg HJ, et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood. 1996;87:3045–52.PubMedGoogle Scholar
- 50.Green DM, Whitton JA, Stovall M, Mertens AC, Donaldson SS, Ruymann FB, et al. Pregnancy outcome of female survivors of childhood cancer: a report from the childhood cancer survivor study. Am J Obstet Gynecol. 2002;187:1070–80.PubMedGoogle Scholar
- 51.Linna MS, Raevuori A, Haukka J, Suvisaari JM, Suokas JT, Gissler M. Reproductive health outcomes in eating disorders. Int J Eat Disord. 2013;46:826–33.PubMedGoogle Scholar
- 52.Bonde JP, Jørgensen KT, Bonzini M, Palmer KT. Miscarriage and occupational activity: a systematic review and meta-analysis regarding shift work, working hours, lifting, standing, and physical workload. Scand J Work Environ Health. 2013;39:325–34.PubMedGoogle Scholar
- 53.Pineles BL, Park E, Samet JM. Systematic review and meta-analysis of miscarriage and maternal exposure to tobacco smoke during pregnancy. Am J Epidemiol. 2014;179:807–23.PubMedPubMedCentralGoogle Scholar
- 54.Kline J, Levin B, Kinney A, Stein Z, Susser M, Warburton D. Cigarette smoking and spontaneous abortion of known karyotype. Precise data but uncertain inferences. Am J Epidemiol. 1995;141:417–27.PubMedGoogle Scholar
- 55.Venners SA, Wang X, Chen C, Wang L, Chen D, Guang W, et al. Paternal smoking and pregnancy loss: a prospective study using a biomarker of pregnancy. Am J Epidemiol. 2004;159:993–1001.PubMedGoogle Scholar
- 56.Andersen AM, Andersen PK, Olsen J, Grønbæk M, Strandberg-Larsen K. Moderate alcohol intake during pregnancy and risk of fetal death. Int J Epidemiol. 2012;41:405–13.PubMedGoogle Scholar
- 57.Henriksen TB, Hjollund NH, Jensen TK, Bonde JP, Andersson AM, Kolstad H, et al. Alcohol consumption at the time of conception and spontaneous abortion. Am J Epidemiol. 2004;160:661–7.PubMedGoogle Scholar
- 58.Signorello LB, McLaughlin JK. Maternal caffeine consumption and spontaneous abortion: a review of the epidemiologic evidence. Epidemiology. 2004;15:229–39.PubMedGoogle Scholar
- 59.Ross LE, Grigoriadis S, Mamisashvili L, Vonderporten EH, Roerecke M, Rehm J, et al. Selected pregnancy and delivery outcomes after exposure to antidepressant medication: a systematic review and meta-analysis. JAMA Psychiatry. 2013;70:436–43.PubMedGoogle Scholar
- 60.Nakhai-Pour HR, Broy P, Sheehy O, Berard A. Use of nonaspirin nonsteroidal anti-inflammatory drugs during pregnancy and the risk of spontaneous abortion. CMAJ. 2011;183:1713–20.PubMedPubMedCentralGoogle Scholar
- 61.Velez Edwards DR, Hartmann KE. Racial differences in risk of spontaneous abortions associated with periconceptional over-the-counter nonsteroidal anti-inflammatory drug exposure. Ann Epidemiol. 2014;24:111–5.e111.PubMedGoogle Scholar
- 62.Phillips-Howard PA, Wood D. The safety of antimalarial drugs in pregnancy. Drug Saf. 1996;14:131–45.PubMedGoogle Scholar
- 63.Schaefer C, Amoura-Elefant E, Vial T, Ornoy A, Garbis H, Robert E, et al. Pregnancy outcome after prenatal quinolone exposure. Evaluation of a case registry of the European network of teratology information services (ENTIS). Eur J Obstet Gynecol Reprod Biol. 1996;69:83–9.PubMedGoogle Scholar
- 64.Rushton DI. The classification and mechanisms of spontaneous abortion. Perspect Pediatr Pathol. 1984;8:269–87.PubMedGoogle Scholar
- 65.Houwert-de Jong MH, Bruinse HW, Eskes TK, Mantingh A, Termijtelen A, Kooyman CD. Early recurrent miscarriage: histology of conception products. Br J Obstet Gynaecol. 1990;97:533–5.PubMedGoogle Scholar
- 66.Minguillon C, Eiben B, Bahr-Porsch S, Vogel M, Hansmann I. The predictive value of chorionic villus histology for identifying chromosomally normal and abnormal spontaneous abortions. Hum Genet. 1989;82:373–6.PubMedGoogle Scholar
- 67.Rehder H, Coerdt W, Eggers R, Klink F, Schwinger E. Is there a correlation between morphological and cytogenetic findings in placental tissue from early missed abortions? Hum Genet. 1989;82:377–85.PubMedGoogle Scholar
- 68.Lazda EJ, Sams VR. The effects of gemeprost on the second trimester fetus. Br J Obstet Gynaecol. 1995;102:731–4.PubMedGoogle Scholar
- 69.Stern JJ, Dorfmann AD, Gutierrez-Najar AJ, Cerrillo M, Coulam CB. Frequency of abnormal karyotypes among abortuses from women with and without a history of recurrent spontaneous abortion. Fertil Steril. 1996;65:250–3.PubMedGoogle Scholar
- 70.Hustin J, Jauniaux E, Schaaps JP. Histological study of the materno-embryonic interface in spontaneous abortion. Placenta. 1990;11:477–86.PubMedGoogle Scholar
- 71.Khong TY, Liddell HS, Robertson WB. Defective haemochorial placentation as a cause of miscarriage: a preliminary study. Br J Obstet Gynaecol. 1987;94:649–55.PubMedGoogle Scholar
- 72.Klatt EC. Pathologic examination of fetal specimens from dilation and evacuation procedures. Am J Clin Pathol. 1995;103:415–8.PubMedGoogle Scholar
- 73.Kalousek DK, Fitch N, Paradice BA. Pathology of the human embryo and previable fetus. New York: Springer; 1990.Google Scholar
- 74.Harris JWS, Ramsey EM. The morphology of human uteroplacental vasculature. Contrib Embryol. 1966;38:43–58.Google Scholar
- 75.Hempstock J, Jauniaux E, Greenwold N, Burton GJ. The contribution of placental oxidative stress to early pregnancy failure. Hum Pathol. 2003;34:1265–75.PubMedGoogle Scholar
- 76.Jauniaux E, Zaidi J, Jurkovic D, Campbell S, Hustin J. Comparison of colour Doppler features and pathological findings in complicated early pregnancy. Hum Reprod. 1994;9:2432–7.PubMedGoogle Scholar
- 77.Valentin L, Sladkevicius P, Laurini R, Soderberg H, Marsal K. Uteroplacental and luteal circulation in normal first-trimester pregnancies: Doppler ultrasonographic and morphologic study. Am J Obstet Gynecol. 1996;174:768–75.PubMedGoogle Scholar
- 78.Van Horn JT, Craven C, Ward K, Branch DW, Silver RM. Histologic features of placentas and abortion specimens from women with antiphospholipid and antiphospholipid-like syndromes. Placenta. 2004;25:642–8.PubMedGoogle Scholar
- 79.Su MT, Lin SH, Chen YC, Kuo PL. Gene-gene interactions and gene polymorphisms of VEGFA and EG-VEGF gene systems in recurrent pregnancy loss. J Assist Reprod Genet. 2014;31:699–705.PubMedPubMedCentralGoogle Scholar
- 80.Prigoshin N, Tambutti M, Larriba J, Gogorza S, Testa R. Cytokine gene polymorphisms in recurrent pregnancy loss of unknown cause. Am J Reprod Immunol. 2004;52:36–41.PubMedGoogle Scholar
- 81.Johnson A, Wapner RJ, Davis GH, Jackson LG. Mosaicism in chorionic villus sampling: an association with poor perinatal outcome. Obstet Gynecol. 1990;75:573–7.PubMedGoogle Scholar
- 82.Wolstenholme J, Rooney DE, Davison EV. Confined placental mosaicism, IUGR, and adverse pregnancy outcome: a controlled retrospective U.K. Collaborative survey. Prenat Diagn. 1994;14:345–61.PubMedGoogle Scholar
- 83.Fritz B, Aslan M, Kalscheuer V, Ramsing M, Saar K, Fuchs B, et al. Low incidence of UPD in spontaneous abortions beyond the 5th gestational week. Eur J Hum Genet. 2001;9:910–6.PubMedGoogle Scholar
- 84.Kondo Y, Tsukishiro S, Tanemura M, Sugiura-Ogasawara M, Suzumori K, Sonta S. Maternal uniparental disomy of chromosome 16 in a case of spontaneous abortion. J Hum Genet. 2004;49:177–81.PubMedGoogle Scholar
- 85.Lehner R, Kucera E, Jirecek S, Egarter C, Husslein P. Ectopic pregnancy. Arch Gynecol Obstet. 2000;263:87–92.PubMedGoogle Scholar
- 86.Kårhus LL, Egerup P, Skovlund CW, Lidegaard Ø. Impact of ectopic pregnancy for reproductive prognosis in next generation. Acta Obstet Gynecol Scand. 2014;93:416–9.PubMedGoogle Scholar
- 87.Farquhar CM. Ectopic pregnancy. Lancet. 2005;366:583–91.PubMedGoogle Scholar
- 88.Shaw JL, Dey SK, Critchley HO, Horne AW. Current knowledge of the aetiology of human tubal ectopic pregnancy. Hum Reprod Update. 2010;16:432–44.PubMedPubMedCentralGoogle Scholar
- 89.Mol BW, Ankum WM, Bossuyt PM, Van der Veen F. Contraception and the risk of ectopic pregnancy: a meta-analysis. Contraception. 1995;52:337–41.PubMedGoogle Scholar
- 90.Napolitano PG, Vu K, Rosa C. Pregnancy after failed tubal sterilization. J Reprod Med. 1996;41:609–13.PubMedGoogle Scholar
- 91.Peterson HB, Xia Z, Hughes JM, Wilcox LS, Tylor LR, Trussell J. The risk of ectopic pregnancy after tubal sterilization. U.S. Collaborative review of sterilization working group. N Engl J Med. 1997;336:762–7.PubMedGoogle Scholar
- 92.Fox H. Ectopic pregnancy. In: Fox H, editor. Haines and Taylor obstetrical and gynaecological pathology. London: Churchill Livingstone; 1995. p. 1113–36.Google Scholar
- 93.Ramirez NC, Lawrence WD, Ginsburg KA. Ectopic pregnancy. A recent five-year study and review of the last 50 years’ literature. J Reprod Med. 1996;41:733–40.PubMedGoogle Scholar
- 94.Marcovici I, Rosenzweig BA, Brill AI, Khan M, Scommegna A. Cervical pregnancy: case reports and a current literature review. Obstet Gynecol Surv. 1994;49:49–55.PubMedGoogle Scholar
- 95.Gaudoin MR, Coulter KL, Robins AM, Verghese A, Hanretty KP. Is the incidence of ovarian ectopic pregnancy increasing? Eur J Obstet Gynecol Reprod Biol. 1996;70:141–3.PubMedGoogle Scholar
- 96.Raziel A, Mordechai E, Schachter M, Friedler S, Pansky M, Ron-El R. A comparison of the incidence, presentation, and management of ovarian pregnancies between two periods of time. J Am Assoc Gynecol Laparosc. 2004;11:191–4.PubMedGoogle Scholar
- 97.Clayton HB, Schieve LA, Peterson HB, Jamieson DJ, Reynolds MA, Wright VC. Ectopic pregnancy risk with assisted reproductive technology procedures. Obstet Gynecol. 2006;107:595–604.PubMedGoogle Scholar
- 98.Rabbani I, Polson DW. Heterotopic pregnancy is not rare. A case report and literature review. J Obstet Gynaecol. 2005;25:204–5.PubMedGoogle Scholar
- 99.Barak S, Oettinger M, Perri A, Cohen HI, Barenboym R, Ophir E. Frozen section examination of endometrial curettings in the diagnosis of ectopic pregnancy. Acta Obstet Gynecol Scand. 2005;84:43–7.PubMedGoogle Scholar
- 100.Matsui H, Iitsuka Y, Yamazawa K, Tanaka N, Seki K, Sekiya S. Changes in the incidence of molar pregnancies. A population-based study in Chiba prefecture and Japan between 1974 and 2000. Hum Reprod. 2003;18:172–5.PubMedGoogle Scholar
- 101.Cheah PL, Looi LM, Sivanesaratnam V. Hydatidiform molar pregnancy in Malaysian women: a histopathological study from the university hospital, Kuala Lumpur. Malays J Pathol. 1993;15:59–63.PubMedGoogle Scholar
- 102.Berkowitz RS, Bernstein MR, Harlow BL, Rice LW, Lage JM, Goldstein DP, et al. Case-control study of risk factors for partial molar pregnancy. Am J Obstet Gynecol. 1995;173:788–94.PubMedGoogle Scholar
- 103.Brinton LA, Wu BZ, Wang W, Ershow AG, Song HZ, Li JY, et al. Gestational trophoblastic disease: a case-control study from the people’s republic of China. Am J Obstet Gynecol. 1989;161:121–7.PubMedGoogle Scholar
- 104.Savage P, Williams J, Wong SL, Short D, Casalboni S, Catalano K, et al. The demographics of molar pregnancies in England and Wales from 2000–2009. J Reprod Med. 2010;55:341–5.PubMedGoogle Scholar
- 105.Paradinas FJ, Browne P, Fisher RA, Foskett M, Bagshawe KD, Newlands E. A clinical, histopathological and flow cytometric study of 149 complete moles, 146 partial moles and 107 non-molar hydropic abortions. Histopathology. 1996;28:101–10.PubMedGoogle Scholar
- 106.Joneborg U, Marions L. Current clinical features of complete and partial hydatidiform mole in Sweden. J Reprod Med. 2014;59:51–5.PubMedGoogle Scholar
- 107.Soto-Wright V, Bernstein M, Goldstein DP, Berkowitz RS. The changing clinical presentation of complete molar pregnancy. Obstet Gynecol. 1995;86:775–9.PubMedGoogle Scholar
- 108.Nguyen NM, Slim R. Genetics and epigenetics of recurrent hydatidiform moles: basic science and genetic counselling. Curr Obstet Gynecol Rep. 2014;3:55–64.PubMedPubMedCentralGoogle Scholar
- 109.Slim R, Wallace EP. NLRP7 and the genetics of hydatidiform moles: recent advances and new challenges. Front Immunol. 2013;4:242.PubMedPubMedCentralGoogle Scholar
- 110.Keep D, Zaragoza MV, Hassold T, Redline RW. Very early complete hydatidiform mole. Hum Pathol. 1996;27:708–13.PubMedGoogle Scholar
- 111.Romaguera RL, Rodriguez MM, Bruce JH, Zuluaga T, Viciana A, Penalver MA, et al. Molar gestations and hydropic abortions differentiated by p57 immunostaining. Fetal Pediatr Pathol. 2004;23:181–90.PubMedGoogle Scholar
- 112.Szulman AE, Surti U. The syndromes of hydatidiform mole. II. Morphologic evolution of the complete and partial mole. Am J Obstet Gynecol. 1978;132:20–7.PubMedGoogle Scholar
- 113.Montes M, Roberts D, Berkowitz RS, Genest DR. Prevalence and significance of implantation site trophoblastic atypia in hydatidiform moles and spontaneous abortions. Am J Clin Pathol. 1996;105:411–6.PubMedGoogle Scholar
- 114.Castrillon DH, Sun D, Weremowicz S, Fisher RA, Crum CP, Genest DR. Discrimination of complete hydatidiform mole from its mimics by immunohistochemistry of the paternally imprinted gene product p57KIP2. Am J Surg Pathol. 2001;25:1225–30.PubMedGoogle Scholar
- 115.Thaker HM, Berlin A, Tycko B, Goldstein DP, Berkowitz RS, Castrillon DH, et al. Immunohistochemistry for the imprinted gene product IPL/PHLDA2 for facilitating the differential diagnosis of complete hydatidiform mole. J Reprod Med. 2004;49:630–6.PubMedGoogle Scholar
- 116.Banet N, DeScipio C, Murphy KM, Beierl K, Adams E, Vang R, et al. Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod Pathol. 2014;27:238–54.PubMedGoogle Scholar
- 117.Joergensen MW, Niemann I, Rasmussen AA, Hindkjaer J, Agerholm I, Bolund L, et al. Triploid pregnancies: genetic and clinical features of 158 cases. Am J Obstet Gynecol. 2014;211:317.e1–19.Google Scholar
- 118.McFadden DE, Kalousek DK. Two different phenotypes of fetuses with chromosomal triploidy: correlation with parental origin of the extra haploid set. Am J Med Genet. 1991;38:535–8.PubMedGoogle Scholar
- 119.Genest DR, Laborde O, Berkowitz RS, Goldstein DP, Bernstein MR, Lage J. A clinicopathologic study of 153 cases of complete hydatidiform mole (1980–1990): histologic grade lacks prognostic significance. Obstet Gynecol. 1991;78:402–9.PubMedGoogle Scholar
- 120.Cheung ANY, Ngan HYS, Collins RJ, Wong YL. Assessment of cell proliferation in hydatidiform mole using monoclonal antibody MIB1 to Ki-67 antigen. J Clin Pathol. 1994;47:601–4.PubMedPubMedCentralGoogle Scholar
- 121.Lage JM, Mark SD, Roberts DJ, Goldstein DP, Bernstein MR, Berkowitz RS. A flow cytometric study of 137 fresh hydropic placentas: correlation between types of hydatidiform moles and nuclear DNA ploidy. Obstet Gynecol. 1992;79:403–10.PubMedGoogle Scholar
- 122.Bristow RE, Shumway J, Khouzami AN, Witter FR. Complete hydatidiform mole and surviving coexistent twin. Obstet Gynecol Surv. 1996;51:705–9.PubMedGoogle Scholar
- 123.Jacques SM, Qureshi F, Doss BJ, Munkarah A. Intraplacental choriocarcinoma associated with viable pregnancy: pathologic features and implications for the mother and infant. Pediatr Dev Pathol. 1998;1:380–7.PubMedGoogle Scholar
- 124.Picton SV, Bose-Haider B, Lendon M, Hancock BW, Campbell RH. Simultaneous choriocarcinoma in mother and newborn infant. Med Pediatr Oncol. 1995;25:475–8.PubMedGoogle Scholar
Copyright information
© Springer International Publishing 2015