Abstract
Just as there are a range of pediatric imaging techniques available during life, a similar repertoire is available as part of the fetal and perinatal postmortem (PM) examination. This chapter gives an overview of the spectrum of radiological imaging modalities currently available in perinatal pathology, covering fetal and neonatal imaging. This covers the diagnostic utility of PM radiographs or X-rays, ultrasound, CT, and MRI in this clinical setting. Each modality is presented with an explanation of how the technique works and how the images are acquired, what the relative advantages and disadvantages of each technology are, and how they may be best employed in the postmortem perinatal setting, with reference to current literature on diagnostic accuracy, where available. The need for appropriate training in the interpretation of normal PM changes is highlighted, and future directions for improving PM imaging in this context is outlined.
Keywords
Radiograph Computed tomography (CT) Ultrasound (US) Magnetic resonance imaging (MRI) Autopsy Pathology Fetus Stillbirth Miscarriage Minimally invasive autopsy (MIA) Less invasive autopsy (LIA) Postmortem Postmortem X-ray or radiograph (PMXR) Postmortem computed tomography (angiography) (PMCT [A]) Postmortem magnetic resonance imaging (PMMR) Perinatal mortality rate (PMR) Sudden infant death syndrome (SIDS) Sudden unexpected death in infancy (SUDI)References
- 1.Shojania KG, Burton EC. The vanishing nonforensic autopsy. N Engl J Med. 2008;358:873–5.CrossRefGoogle Scholar
- 2.Sieswerda-Hoogendoorn T, van Rijn RR. Current techniques in postmortem imaging with specific attention to paediatric applications. Pediatr Radiol. 2010;40:141–52.CrossRefGoogle Scholar
- 3.Centre for Maternal Enquiries. Saving mothers’ lives: reviewing maternal deaths to make motherhood safer: 2006–2008. The eighth report of the confidential enquiries into maternal deaths in the United Kingdom. BJOG. 2011;118:1–203.Google Scholar
- 4.McHaffie HE, Fowlie PW, Hume R, et al. Consent to autopsy for neonates. Arch Dis Child Fetal Neonatal Ed. 2001;85:F4–7.CrossRefGoogle Scholar
- 5.Vogt C, Blaas HG, Salvesen KÅ, Eik-Nes SH. Comparison between prenatal ultrasound and postmortem findings in fetuses and infants with developmental anomalies. Ultrasound Obstet Gynecol. 2012;39:666–72.CrossRefGoogle Scholar
- 6.Arthurs OJ, Taylor AM, Sebire NJ. Indications, advantages and limitations of perinatal postmortem imaging in clinical practice. Pediatr Radiol. 2015;45:491–500.CrossRefGoogle Scholar
- 7.Arthurs OJ, van Rijn RR, Sebire NJ. Current status of paediatric postmortem imaging: an ESPR questionnaire-based survey. Pediatr Radiol. 2014;44:244–51.CrossRefGoogle Scholar
- 8.Calder AD, Offiah AC. Fetal radiography for suspected skeletal dysplasia: technique, normal appearances, diagnostic approach. Pediatr Radiol. 2015;45:536–48.CrossRefGoogle Scholar
- 9.Arthurs OJ, Calder AD, Klein WM. Is there still a role for fetal and perinatal postmortem radiography? J Forensic Radiol Imaging. 2015;3:5–11.CrossRefGoogle Scholar
- 10.Royal College of Pathologists Working Party on the Autopsy. Guidelines on autopsy practice: scenario 9: stillborn infant (singleton). 2006; http://www.rcpath.org/Resources/RCPath/Migrated%20Resources/Documents/G/G001Autopsy-Stillbirths-Jun06.pdf. Accessed 01 Oct 2014.
- 11.Foote GA, Wilson AJ, Stewart JH. Perinatal postmortem radiography – experience with 2500 cases. Br J Radiol. 1978;51:351–6.CrossRefGoogle Scholar
- 12.Cremin BJ, Draper R. The value of radiography in perinatal deaths. Pediatr Radiol. 1981;11:143–6.CrossRefGoogle Scholar
- 13.Kalifa G, Barbet JP, Labbe F, Houette A, Sellier N. Value of systematic postmortem radiographic examinations of fetuses – 400 cases. Pediatr Radiol. 1989;19:111–3.CrossRefGoogle Scholar
- 14.Bourlière-Najean B, Russel AS, Panuel M, et al. Value of fetal skeletal radiographs in the diagnosis of fetal death. Eur Radiol. 2003;13:1046–9.PubMedGoogle Scholar
- 15.Seppanen U. The value of perinatal postmortem radiography: experience of 514 cases. Ann Clin Res. 1985;44:1–59.Google Scholar
- 16.Olsen O, Espeland A, Maartman-Moe H, Lachman R, Rosendahl K. Diagnostic value of radiography in cases of perinatal death: a population based study. Arch Dis Child Fetal Neonatal Ed. 2003;88:F521–4.CrossRefGoogle Scholar
- 17.Arthurs OJ, Calder AC, Kiho L, Taylor AM, Sebire NJ. Routine perinatal and paediatric post-mortem radiography: detection rates and practice implications. Pediatr Radiol. 2014;44:252–7.CrossRefGoogle Scholar
- 18.Charlier P, Chaillot PF, Watier L, et al. Is postmortem ultrasonography a useful tool for forensic purposes? Med Sci Law. 2013;3:227–34.CrossRefGoogle Scholar
- 19.Breeze ACG, Jessop FA, Whitehead AL, et al. Feasibility of percutaneous organ biopsy as part of a minimally invasive perinatal autopsy. Virchows Arch. 2008;452:201–7.CrossRefGoogle Scholar
- 20.Garg S, Basu S, Mohan H, Bal A. Comparison of needle autopsy with conventional autopsy in neonates. Fetal Pediatr Pathol. 2009;28:139–50.CrossRefGoogle Scholar
- 21.Fariña J, Millana C, Fdez-Aceñero J, et al. Ultrasonographic autopsy (echopsy): a new autopsy technique. Virchows Arch. 2002;440:635–9.CrossRefGoogle Scholar
- 22.Roberts ISD, Benamore RE, Benbow EW, et al. Postmortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet. 2012;379:136–42.CrossRefGoogle Scholar
- 23.Ruder TD, Hatch GM, Ebert LC, et al. Whole body postmortem magnetic resonance angiography. J Forensic Sci. 2012;57:778–82.CrossRefGoogle Scholar
- 24.O’Donoghue K, O’Regan KN, Sheridan CP, et al. Investigation of the role of computed tomography as an adjunct to autopsy in the evaluation of stillbirth. Eur J Radiol. 2012;81:1667–75.CrossRefGoogle Scholar
- 25.Sakurai T, Michiue T, Ishikawa T, et al. Postmortem CT investigation of skeletal and dental maturation of the fetuses and newborn infants: a serial case study. Forensic Sci Med Pathol. 2012;8:351–7.CrossRefGoogle Scholar
- 26.Proisy M, Marchand AJ, Loget P, et al. Whole-body postmortem computed tomography compared with autopsy in the investigation of unexpected death in infants and children. Eur Radiol. 2013;23:1711–9.CrossRefGoogle Scholar
- 27.Oyake Y, Aoki T, Shiotani S, et al. Postmortem computed tomography for detecting causes of sudden death in infants and children: retrospective review of cases. Radiat Med. 2006;24:493–502.CrossRefGoogle Scholar
- 28.Grabherr S, Doenz F, Steger B, et al. Multi-phase postmortem CT angiography: development of a standardized protocol. Int J Leg Med. 2011;125:791–802.CrossRefGoogle Scholar
- 29.Bruguier C, Mosimann PJ, Vaucher P, et al. Multi-phase postmortem CT angiography: recognizing technique-related artefacts and pitfalls. Int J Leg Med. 2013;127:639–52.CrossRefGoogle Scholar
- 30.Votino C, Cannie M, Segers V, et al. Virtual autopsy by computed tomographic angiography of the fetal heart: a feasibility study. Ultrasound Obstet Gynecol. 2012;39:679–84.CrossRefGoogle Scholar
- 31.Rutty GN, Brough A, Biggs MJ, et al. The role of micro-computed tomography in forensic investigations. Forensic Sci Int. 2013;225:60–6.CrossRefGoogle Scholar
- 32.Lombardi CM, Zambelli V, Botta G, Moltrasio F, Cattoretti G, Lucchini V, et al. Post-mortem micro-computed tomography (micro-CT) of small fetuses and hearts. Ultrasound Obstet Gynecol. 2014;44:600–9.CrossRefGoogle Scholar
- 33.Brookes JA, Hall-Craggs MA, Sams VR, Lees WR. Non-invasive perinatal necropsy by magnetic resonance imaging. Lancet. 1996;348:1139–41.CrossRefGoogle Scholar
- 34.Woodward PJ, Sohaey R, Harris DP, et al. Postmortem fetal MR imaging: comparison with findings at autopsy. AJR Am J Roentgenol. 1987;168:41–6.CrossRefGoogle Scholar
- 35.Griffiths PD, Paley MNJ, Whitby EH. Postmortem MRI as an adjunct to fetal or neonatal autopsy. Lancet. 2005;365:1271–3.CrossRefGoogle Scholar
- 36.Thayyil S, Schievano S, Robertson NJ, et al. A semi-automated method for non-invasive internal organ weight estimation by postmortem magnetic resonance imaging in fetuses, newborns and children. Eur J Radiol. 2009;72:321–6.CrossRefGoogle Scholar
- 37.Prodhomme O, Seguret F, Martrille L, et al. Organ volume measurements: comparison between MRI and autopsy findings in infants following sudden unexpected death. Arch Dis Child Fetal Neonatal Ed. 2012;97:F434–8.CrossRefGoogle Scholar
- 38.Votino C, Verhoye M, Segers V, et al. Fetal organ weight estimation by postmortem high-field magnetic resonance imaging before 20 weeks’ gestation. Ultrasound Obstet Gynecol. 2012;39:673–8.CrossRefGoogle Scholar
- 39.Thayyil S, Sebire NJ, Chitty LS, For the MARIAS Collaborative Group, et al. Postmortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet. 2013;382:223–33.CrossRefGoogle Scholar
- 40.Arthurs OJ, Thayyil S, Olsen OE, Addison S, Wade A, Jones R, et al. Diagnostic accuracy of postmortem MRI for thoracic abnormalities in fetuses and children. Eur Radiol. 2014;24:2876–84.CrossRefGoogle Scholar
- 41.Arthurs OJ, Thayyil S, Addison S, Wade A, Jones R, Norman W, et al. Diagnostic accuracy of postmortem MRI for musculoskeletal abnormalities in fetuses and children. Prenat Diagn. 2014;34:1254–1261. doi: 10.1002/pd.4460.CrossRefGoogle Scholar
- 42.Taylor AM, Sebire NJ, Ashworth MT, Schievano S, Scott RJ, Wade A, et al. Postmortem cardiovascular magnetic resonance imaging in fetuses and children: a masked comparison study with conventional autopsy. Circulation. 2014;129:1937–44.CrossRefGoogle Scholar
- 43.Arthurs OJ, Barber J, Taylor AM, Sebire NJ. Normal appearances on perinatal and paediatric postmortem magnetic resonance imaging (PMMR). Pediatr Radiol. 2015;45(4):527–35.CrossRefGoogle Scholar
- 44.Thayyil S, Cleary JO, Sebire NJ, Scott RJ, Chong K, Gunny R, et al. Post-mortem examination of human fetuses: a comparison of whole-body high-field MRI at 9.4T with conventional MRI and invasive autopsy. Lancet. 2009;374:467–75.CrossRefGoogle Scholar
- 45.Sebire NJ, Miller S, Jacques TS, Taylor AM, Rennie JM, Kendall G, et al. Post-mortem apparent resolution of fetal ventriculomegaly: evidence from magnetic resonance imaging. Prenat Diagn. 2013;33:360–4.PubMedGoogle Scholar
- 46.Liebrechts-Akkerman G, Liu F, Lao O, et al. PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population. Int J Leg Med. 2014;128:621–9.Google Scholar
- 47.Evans A, Bagnall RD, Duflou J, Semsarian C. Postmortem review and genetic analysis in sudden infant death syndrome: an 11-year review. Hum Pathol. 2013;44:1730–6.CrossRefGoogle Scholar
- 48.Sebire NJ, Weber MA, Thayyil S, et al. Minimally invasive perinatal autopsies using magnetic resonance imaging and endoscopic postmortem examination (“keyhole autopsy”): feasibility and initial experience. J Matern Fetal Neonatal Med. 2012;25:513–8.CrossRefGoogle Scholar
- 49.Ben-Sasi K, Chitty LS, Franck LS, et al. Acceptability of a minimally invasive perinatal/paediatric autopsy: healthcare professionals’ views and implications for practice. Prenat Diagn. 2013;33:307–12.PubMedGoogle Scholar
- 50.Breeze AC, Jessop FA, Set PA, et al. Minimally-invasive fetal autopsy using magnetic resonance imaging and percutaneous organ biopsies: clinical value and comparison to conventional autopsy. Ultrasound Obstet Gynecol. 2011;37:317–23.CrossRefGoogle Scholar
- 51.Cannie M, Votino C, Moerman P, et al. Acceptance, reliability and confidence of diagnosis of fetal and neonatal virtuopsy compared with conventional autopsy: a prospective study. Ultrasound Obstet Gynecol. 2012;39:659–65.CrossRefGoogle Scholar
- 52.Arthurs OJ, van Rijn RR, Taylor AM, Sebire NJ. Paediatric and perinatal postmortem imaging: the need for a subspecialty approach. Pediatr Radiol. 2015;45:483–90.CrossRefGoogle Scholar
- 53.Arthurs OJ, Taylor AM, Sebire NJ. The less-invasive perinatal autopsy: current status and future directions. Fetal Matern Med Rev. 2013;24:45–59.CrossRefGoogle Scholar
- 54.Arthurs OJ, Chitty LS, Judge-Kronis L, Sebire NJ. Postmortem magnetic resonance appearances of congenital high airway obstruction syndrome. Pediatr Radiol. 2015;45:556–61.CrossRefGoogle Scholar