Advertisement

Genetic Metabolic Disease

  • Kaustuv Bhattacharya
  • Francesca Moore
  • John ChristodoulouEmail author

Abstract

Inborn errors of metabolism (IEM) constitute inherited enzyme or transport protein defects, potentially leading to accumulation of toxic substrates or deficiency of essential products of any given process. There are often further consequences of the primary perturbation, leading to compensatory physiology or further interference in cellular processes. These biochemical effects can, in some instances, lead to fetal developmental abnormalities and in others to dramatic postnatal compromise with significant mortality and morbidity. This chapter discusses the following presentations: neonatal acute metabolic encephalopathy, neonatal epileptic epilepsy, liver disease, cardiomyopathy, nonimmune hydrops fetalis, and dysmorphic IEM (including some lysosomal and peroxisomal disorders and congenital disorders of glycosylation). Systematic investigation of these clinical presentations can often lead to a definitive diagnosis. Most of these disorders are rare, but recent medical advances have made many treatable. It is therefore imperative that these disorders are considered early in differential diagnoses, investigated rigorously and expeditiously, and managed appropriately. Newborn bloodspot screening protocols can also identify many of these conditions in the presymptomatic stage, and hence, knowledge of local screening strategies is imperative for those investigating neonates. Screening tests require definitive testing algorithms in order to correctly identify an affected infant.

Keywords

Inborn errors of metabolism (IEM) Neonatal acute metabolic encephalopathy Neonatal epileptic epilepsy Liver disease Cardiomyopathy Nonimmune hydrops fetalis Dysmorphic inborn errors of metabolism Lysosomal disorders Peroxisomal disorders Congenital disorders of glycosylation 

References

  1. 1.
    Garrod A. The croonian lectures on inborn errors of metabolism. Lancet. 1908;172:1–7.Google Scholar
  2. 2.
    Garrod AE. Inborn factors in disease. Oxford: Oxford University Press; 1931.Google Scholar
  3. 3.
    Fölling A. Über ausscheidung von phenylbrenztraubensäure in den harn als stoffwechselanomalie in verbindung mit imbezillität. Hoppe-Seyler’s Zeitschrift für physiologische Chemie. 1934;227: 169–81.Google Scholar
  4. 4.
    Cori GT, Cori F. Glucose-6-phosphatase of the liver in glycogen storage disease. J Biol Chem. 1952;199:661–7.PubMedGoogle Scholar
  5. 5.
    Krebs HA. The intermediate metabolism of carbohydrates. Lancet. 1937;230:736–8.Google Scholar
  6. 6.
    De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955;60:604–17.PubMedCentralGoogle Scholar
  7. 7.
    Hers HG. α-Glucosidase deficiency in generalized glycogen-storage disease (Pompe’s disease). Biochem J. 1963;86:11–6.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Jaeken J, van Eijk HG, van der Heul C, Corbeel L, Eeckels R, Eggermont E. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta. 1984;144:245–7.PubMedGoogle Scholar
  9. 9.
    Christodoulou J. A clinical approach to inborn errors of metabolism. In: Rudolph AM, Kamei R, Overby KJ, editors. Rudolph’s fundamentals of paediatrics. 3rd ed. New York: McGraw-Hill; 2002. p. 221–51.Google Scholar
  10. 10.
    Maranda B, Cousineau J, Allard P, Lambert M. False positives in plasma ammonia measurement and their clinical impact in a pediatric population. Clin Biochem. 2007;40:531–5.PubMedGoogle Scholar
  11. 11.
    Kumps A, Duez P, Mardens Y. Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48:708–17.PubMedGoogle Scholar
  12. 12.
    de Jong JG, Wevers RA, Liebrand-van Sambeek R. Measuring urinary glycosaminoglycans in the presence of protein: an improved screening procedure for mucopolysaccharidoses based on dimethylmethylene blue. Clin Chem. 1992;38:803–7.PubMedGoogle Scholar
  13. 13.
    Roe CR, Millington DS, Kahler SG, Kodo N, Norwood DL. Carnitine homeostasis in the organic acidurias. Prog Clin Biol Res. 1990;321:383–402.PubMedGoogle Scholar
  14. 14.
    Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.PubMedGoogle Scholar
  15. 15.
    Dussault JH, Coulombe P, Laberge C, Letarte J, Guyda H, Khoury K. Preliminary report on a mass screening program for neonatal hypothyroidism. J Pediatr. 1975;86:670–4.PubMedGoogle Scholar
  16. 16.
    Klein A, Agustin A, Foley T. Successful laboratory screening for congenital hypothyroidism. Lancet. 1974;2:77–9.PubMedGoogle Scholar
  17. 17.
    Hammond KB, Abman SH, Sokol RJ, Accurso FJ. Efficacy of statewide neonatal screening for cystic fibrosis by assay of trypsinogen concentrations. N Engl J Med. 1991;325:769–74.PubMedGoogle Scholar
  18. 18.
    Wilcken B, Wiley V, Hammond J, Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med. 2003;348:2304–12.PubMedGoogle Scholar
  19. 19.
    Yang CF, Liu HC, Hsu TR, Tsai FC, Chiang SF, Chiang CC, et al. A large-scale nationwide newborn screening program for pompe disease in Taiwan: towards effective diagnosis and treatment. Am J Med Genet A. 2014;164A:54–61.PubMedGoogle Scholar
  20. 20.
    Kwan A, Church JA, Cowan MJ, Agarwal R, Kapoor N, Kohn DB, et al. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: results of the first 2 years. J Allergy Clin Immunol. 2013;132:140–50.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Estrella J, Wilcken B, Carpenter K, Bhattacharya K, Tchan M, Wiley V. Expanded newborn screening in New South Wales: missed cases. J Inherit Metab Dis. 2014;37:881–7.PubMedGoogle Scholar
  22. 22.
    Dercksen M, Ijlst L, Duran M, Mienie LJ, van Cruchten A, van der Westhuizen FH, et al. Inhibition of n-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme a esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842:2510–6.Google Scholar
  23. 23.
    Saudubray JM, Nassogne MC, de Lonlay P, Touati G. Clinical approach to inherited metabolic disorders in neonates: an overview. Semin Neonatol. 2002;7:3–15.PubMedGoogle Scholar
  24. 24.
    Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002;109:999–1008.PubMedGoogle Scholar
  25. 25.
    Lee JY, Chiong MA, Estrada SC, Cutiongco-De la Paz EM, Silao CL, Padilla CD. Maple syrup urine disease (MSUD) – clinical profile of 47 Filipino patients. J Inherit Metab Dis. 2008;31:S281–5.PubMedGoogle Scholar
  26. 26.
    Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. Seattle: University of Washington; 2006. [updated 09/MAY/14; cited 2014 30/Oct/2014]; 1993–2014:[Available from: http://www.ncbi.nlm.nih.gov/books/NBK1319/.Google Scholar
  27. 27.
    Robinson BH, Taylor J, Sherwood WG. Deficiency of dihydrolipoyl dehydrogenase (a component of the pyruvate and alpha-ketoglutarate dehydrogenase complexes): a cause of congenital chronic lactic acidosis in infancy. Pediatr Res. 1977;11:1198–202.PubMedGoogle Scholar
  28. 28.
    Oberholzer VG, Levin B, Burgess EA, Young WF. Methylmalonic aciduria. An inborn error of metabolism leading to chronic metabolic acidosis. Arch Dis Child. 1967;42:492–504.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Pena L, Franks J, Chapman KA, Gropman A, Ah Mew N, Chakrapani A, et al. Natural history of propionic acidemia. Mol Genet Metab. 2012;105:5–9.PubMedGoogle Scholar
  30. 30.
    Nizon M, Ottolenghi C, Valayannopoulos V, Arnoux JB, Barbier V, Habarou F, et al. Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis. 2013;8:148.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31:350–60.PubMedGoogle Scholar
  32. 32.
    Fischer S, Huemer M, Baumgartner M, Deodato F, Ballhausen D, Boneh A, et al. Clinical presentation and outcome in a series of 88 patients with the cblC defect. J Inherit Metab Dis. 2014;37:831–40.PubMedGoogle Scholar
  33. 33.
    Wilson CJ, Myer M, Darlow BA, Stanley T, Thomson G, Baumgartner ER, et al. Severe holocarboxylase synthetase deficiency with incomplete biotin responsiveness resulting in antenatal insult in samoan neonates. J Pediatr. 2005;147:115–8.PubMedGoogle Scholar
  34. 34.
    Van Hove JL, Grunewald S, Jaeken J, Demaerel P, Declercq PE, Bourdoux P, et al. D,L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD). Lancet. 2003;361:1433–5.PubMedGoogle Scholar
  35. 35.
    Tuchman M, Lee B, Lichter-Konecki U, Summar ML, Yudkoff M, Cederbaum SD, et al. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab. 2008;94:397–402.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Coman D, Bhattacharya K. Extended newborn screening: an update for the general paediatrician. J Paediatr Child Health. 2012;48:E68–72.PubMedGoogle Scholar
  37. 37.
    Wilcken B. Fatty acid oxidation disorders: outcome and long-term prognosis. J Inherit Metab Dis. 2010;33:501–6.PubMedGoogle Scholar
  38. 38.
    Wilcken B, Hammond J, Silink M. Morbidity and mortality in medium chain acyl coenzyme A dehydrogenase deficiency. Arch Dis Child. 1994;70:410–2.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ho G, Yonezawa A, Masuda S, Inui K, Sim KG, Carpenter K, et al. Maternal riboflavin deficiency, resulting in transient neonatal-onset glutaric aciduria Type 2, is caused by a microdeletion in the riboflavin transporter gene GPR172B. Hum Mutat. 2011;32:E1976–84.PubMedGoogle Scholar
  40. 40.
    Bhattacharya K, Lee PJ. Glycogen storage disease. Oxford Textbook of Medicine. Oxford: Oxford University Press; 2014.Google Scholar
  41. 41.
    Barnerias C, Saudubray JM, Touati G, De Lonlay P, Dulac O, Ponsot G, et al. Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol. 2010;52:e1–9.PubMedGoogle Scholar
  42. 42.
    Menezes MJ, Riley LG, Christodoulou J. Mitochondrial respiratory chain disorders in childhood: insights into diagnosis and management in the new era of genomic medicine. Biochim Biophys Acta. 2014;1840:1368–79.PubMedGoogle Scholar
  43. 43.
    Wilcken B, Haas M, Joy P, Wiley V, Chaplin M, Black C, et al. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in australia: a cohort study. Lancet. 2007;369:37–42.PubMedGoogle Scholar
  44. 44.
    Mills PB, Surtees RA, Champion MP, Beesley CE, Dalton N, Scambler PJ, et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum Mol Genet. 2005;14:1077–86.PubMedGoogle Scholar
  45. 45.
    Mills PB, Struys E, Jakobs C, Plecko B, Baxter P, Baumgartner M, et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med. 2006;12:307–9.PubMedGoogle Scholar
  46. 46.
    Veldman A, Santamaria-Araujo JA, Sollazzo S, Pitt J, Gianello R, Yaplito-Lee J, et al. Successful treatment of molybdenum cofactor deficiency type a with cpmp. Pediatrics. 2010;125:e1249–54.PubMedGoogle Scholar
  47. 47.
    Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta. 2012;1822:1430–41.PubMedGoogle Scholar
  48. 48.
    Kurian MA, Gissen P, Smith M, Heales Jr S, Clayton PT. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. The Lancet Neurol. 2011;10:721–33.PubMedGoogle Scholar
  49. 49.
    Bahi-Buisson N, Roze E, Dionisi C, Escande F, Valayannopoulos V, Feillet F, et al. Neurological aspects of hyperinsulinism-hyperammonaemia syndrome. Dev Med Child Neurol. 2008;50:945–9.PubMedGoogle Scholar
  50. 50.
    Deschauer M, Gizatullina Z, Schulze A, Pritsch M, Knoppel C, Knape M, et al. Molecular and biochemical investigations in fumarase deficiency. Mol Genet Metab. 2006;88:146–52.PubMedGoogle Scholar
  51. 51.
    Friedman M, Hatcher G, Watson L. Primary hypomagnesaemia with secondary hypocalcaemia in an infant. Lancet. 1967;1:703–5.PubMedGoogle Scholar
  52. 52.
    Mignot C, Moutard ML, Trouillard O, Gourfinkel-An I, Jacquette A, Arveiler B, et al. STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor in three patients. Epilepsia. 2011;52:1820–7.PubMedGoogle Scholar
  53. 53.
    Muhlhausen C, Salomons GS, Lukacs Z, Struys EA, van der Knaap MS, Ullrich K, et al. Combined D2-/L2-hydroxyglutaric aciduria (SLC25A1 deficiency): clinical course and effects of citrate treatment. J Inherit Metab Dis. 2014;37:775–81.PubMedGoogle Scholar
  54. 54.
    Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia. 2012;53:1503–10.PubMedGoogle Scholar
  55. 55.
    Staretz-Chacham O, Lang TC, LaMarca ME, Krasnewich D, Sidransky E. Lysosomal storage disorders in the newborn. Pediatrics. 2009;123:1191–207.PubMedPubMedCentralGoogle Scholar
  56. 56.
    van der Crabben SN, Verhoeven-Duif NM, Brilstra EH, Van Maldergem L, Coskun T, Rubio-Gozalbo E, et al. An update on serine deficiency disorders. J Inherit Metab Dis. 2013;36:613–9.PubMedGoogle Scholar
  57. 57.
    Wolf NI, Bast T, Surtees R. Epilepsy in inborn errors of metabolism. Epileptic Disord. 2005;7:67–81.PubMedGoogle Scholar
  58. 58.
    Hoover-Fong JE, Shah S, Van Hove JL, Applegarth D, Toone J, Hamosh A. Natural history of nonketotic hyperglycinemia in 65 patients. Neurology. 2004;63:1847–53.PubMedGoogle Scholar
  59. 59.
    McKusick VA, Kniffen CL. Epileptic encephalopathy early infantile. Baltimore: McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University; 2011. [updated 24/OCT/14; cited 2014 30/oct/2014].; Available from: http://omim.org/phenotypicSeries/308350.Google Scholar
  60. 60.
    Evans JC, Archer HL, Colley JP, Ravn K, Nielsen JB, Kerr A, et al. Early onset seizures and rett-like features associated with mutations in CDKL5. Eur J Hum Genet. 2005;13:1113–20.PubMedGoogle Scholar
  61. 61.
    Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S, et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet: EJHG. 2013;21:266–73.PubMedGoogle Scholar
  62. 62.
    Clayton PT. Inborn errors presenting with liver dysfunction. Semin Neonatol: 2002;7:49–63.PubMedGoogle Scholar
  63. 63.
    Berry GT. Galactosemia: when is it a newborn screening emergency? Mol Genet Metab. 2012;106:7–11.PubMedGoogle Scholar
  64. 64.
    Larochelle J, Alvarez F, Bussieres JF, Chevalier I, Dallaire L, Dubois J, et al. Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Québec. Mol Genet Metab. 2012;107:49–54.PubMedGoogle Scholar
  65. 65.
    Fregonese L, Stolk J. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J Rare Dis. 2008;3:16.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kadakol A, Ghosh SS, Sappal BS, Sharma G, Chowdhury JR, Chowdhury NR. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler-Najjar and Gilbert syndromes: correlation of genotype to phenotype. Hum Mutat. 2000;16:297–306.PubMedGoogle Scholar
  67. 67.
    Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet. 2002;47:333–41.PubMedGoogle Scholar
  68. 68.
    Wraith JE. Lysosomal disorders. Semin Neonatol. 2002;7:75–83.PubMedGoogle Scholar
  69. 69.
    Freeze HH. Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. Curr Mol Med. 2007;7:389–96.PubMedGoogle Scholar
  70. 70.
    Morotti RA, Suchy FJ, Magid MS. Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings. Semin Liver Dis. 2011;31:3–10.PubMedGoogle Scholar
  71. 71.
    Buhrdel P, Bohme HJ, Didt L. Biochemical and clinical observations in four patients with fructose-1,6-diphosphatase deficiency. Eur J Pediatr. 1990;149:574–6.PubMedGoogle Scholar
  72. 72.
    Zanella A, Fermo E, Bianchi P, Chiarelli LR, Valentini G. Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev. 2007;21:217–31.PubMedGoogle Scholar
  73. 73.
    Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371:64–74.PubMedGoogle Scholar
  74. 74.
    Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007;2:16.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Balwani M, Desnick RJ. The porphyrias: advances in diagnosis and treatment. Blood. 2012;120:4496–504.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Wraith JE, Sedel F, Pineda M, Wijburg FA, Hendriksz CJ, Fahey M, et al. Niemann-Pick type C Suspicion Index tool: analyses by age and association of manifestations. J Inherit Metab Dis. 2014;37:93–101.PubMedGoogle Scholar
  77. 77.
    Copeland WC. Inherited mitochondrial diseases of DNA replication. Annu Rev Med. 2008;59:131–46.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Magoulas PL, El-Hattab AW. Glycogen storage disease type IV. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. Genereviews. Seattle: University of Washington; 1993.Google Scholar
  79. 79.
    Nowaczyk MJ, Irons MB. Smith-Lemli-Opitz syndrome: phenotype, natural history, and epidemiology. Am J Med Genet C: Semin Med Genet. 2012;160C:250–62.Google Scholar
  80. 80.
    Konstantinidou A, Karadimas C, Waterham HR, Superti-Furga A, Kaminopetros P, Grigoriadou M, et al. Pathologic, radiographic and molecular findings in three fetuses diagnosed with HEM/Greenberg skeletal dysplasia. Prenat Diagn. 2008;28:309–12.PubMedGoogle Scholar
  81. 81.
    Kishnani PS, Corzo D, Nicolino M, Byrne B, Mandel H, Hwu WL, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe’s disease. Neurology. 2007;68:99–109.Google Scholar
  82. 82.
    Jefferies JL. Barth syndrome. Am J Med Genet C: Semin Med Genet. 2013;163C:198–205.Google Scholar
  83. 83.
    Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, et al. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358:605–14.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Babcock DS, Bove KE, Hug G, Dignan PS, Soukup S, Warren NS. Fetal mucolipidosis II (I-cell disease): radiologic and pathologic correlation. Pediatr Radiol. 1986;16:32–9.PubMedGoogle Scholar
  85. 85.
    Komrower GM, Sardharwalla IB, Coutts JM, Ingham D. Management of maternal phenylketonuria: an emerging clinical problem. Br Med J. 1979;1:1383–7.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Kaustuv Bhattacharya
    • 1
  • Francesca Moore
    • 2
  • John Christodoulou
    • 3
    Email author
  1. 1.Genetic Metabolic Disorders ServiceChildren’s Hospital at Westmead and University of SydneyWestmeadAustralia
  2. 2.NSW Biochemical Genetics ServiceThe Children’s Hospital, WestmeadWestmeadAustralia
  3. 3.Western Sydney Genetics ProgramChildren’s Hospital at WestmeadWestmeadAustralia

Personalised recommendations