Design of High Voltage Full-Bridge Inverter Using Marx Derived Switches

  • Nelson SantosEmail author
  • J. Fernando Silva
  • Vasco Soares
  • Sónia F. Pinto
  • Duarte Sousa
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 450)


This paper presents a high–voltage (HV) inverter to generate bipolar voltages with variable duty-cycle and frequency for HV pulsed power or HV electrical network applications. Each one of the four HV inverter switches is built with a series stack of semiconductor devices, derived from the Marx generator concept, using small capacitors to equally share the voltage among the individual series stacked semiconductors. A sliding mode control is used to control the output voltage and a delay technique is used to reduce dU/dt at the HV inverter output and to balance the capacitor voltages. The design and structure of the HV inverter switches is described together with the delay technique. Steady-state and dynamic behavior is evaluated. Simulation results are presented (using MATLAB/Simulink software) and discussed.


Pulsed power Systems Marx generator Bipolar pulses High voltage inverter Smart-grids 


  1. 1.
    R. Withanage, R., Crookes, W., Shammas, N.: Novel voltage balancing technique for series connection of IGBTs. In: 2007 European Conference on Power Electronics and Applications, pp. 1–10 (September 2007) Google Scholar
  2. 2.
    Robinson, F.V., Hamidi, V.: Series connecting devices for high-voltage power conversion. In: Universities Power Engineering Conference, UPEC 2007, pp. 1134–1139 (2007)Google Scholar
  3. 3.
    Redondo, L.M., Silva, J.F.: Solid state pulsed power electronics. In: Rashid, M.H.(ed.) Power Electronics Handbook, 3rd edn., ch. 26, pp. 669–710. Butterworth-Heinemann Publishing , Elsevier (2011)Google Scholar
  4. 4.
    Redondo, L.M., Margato, E., Silva, J.F.: Rise time reduction in high-voltage pulse transformers using auxiliary windings. IEEE Transactions on Power Electronics 17(2), 196–206 (2007)CrossRefGoogle Scholar
  5. 5.
    Redondo, L.M., Canacsinh, H., Silva, J.F.: New technique for uniform voltage sharing in series stacked semiconductors. IEEE Transactions on Dielectrics and Electrical Insulation 18(4), 1130–1136 (2011)CrossRefGoogle Scholar
  6. 6.
    Santos, N., Silva, J.A., Santana, J.: Sliding mode control of unified power quality conditioner for 3 phase 4 wire systems. In: Camarinha-Matos, L.M., Barrento, N.S., Mendonça, R. (eds.) DoCEIS 2014. IFIP AICT, vol. 423, pp. 443–450. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Fernando Silva, J.: PWM audio power amplifiers: sigma delta versus sliding mode control. In: Proc. IEEE/ICECS 1998 , Lisboa, Portugal, Setembro, vol. 1, pp. 359–362 (1998) ISBN 0-7803-5008-1Google Scholar
  8. 8.
    Fernando Silva, J.: Sliding mode control of voltage sourced boost-type reversible rectifiers In: Proc. IEEE/ISIE 1997 Conference , Guimarães, Portugal, Julho, vol. 2, pp 329–334 (1997) ISBN 0-7803-3937-1Google Scholar
  9. 9.
    Fernando Silva, J., Pires, V.F., Pinto, S., Barros, J.D.: Advanced control methods for power electronics systems. special issue on Modelling and simulation of Electrical Machines, Converters and Systems of the Transactions on Mathematics and Computers in Simulation, IMACS 63(3-5), 281–295 (2003) ISSN 0378-4754Google Scholar
  10. 10.
    Silva, J.F.: Electrónica Industrial – Semicondutores e Conversores de Potência, Fundação Calouste Gulbenkian, 2a edição (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Nelson Santos
    • 1
    Email author
  • J. Fernando Silva
    • 2
  • Vasco Soares
    • 1
  • Sónia F. Pinto
    • 2
  • Duarte Sousa
    • 2
  1. 1.Instituto Superior de Engenharia de LisboaINESC-IDLisboaPortugal
  2. 2.Instituto Superior TécnicoUniversidade de Lisboa, INESC-ID, DEECLisboaPortugal

Personalised recommendations