Simulation of a-Si PV System Linked to the Grid by DC Boost and Three-Level Inverter Under Cloud Scope

  • L. Fialho
  • R. MelícioEmail author
  • V. M. F. Mendes
  • M. Collares-Pereira
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 450)


This paper is about a PV system linked to the electric grid through power converters under cloud scope. The PV system is modeled by the five parameters equivalent circuit and a MPPT procedure is integrated into the modeling. The modeling for the converters models the association of a DC-DC boost with a three-level inverter. PI controllers are used with PWM by sliding mode control associated with space vector modulation controlling the booster and the inverter. A case study addresses a simulation to assess the performance of a PV system linked to the electric grid. Conclusions regarding the integration of the PV system into the electric grid are presented.


PV system DC-DC boost Three-level inverter Simulation 


  1. 1.
    López, M.E.A., Mantiñan, F.J.G., Molina, M.G.: Implementation of wireless remote monitoring and control of solar photovoltaic (PV) system. In: 6th IEEE/PES Transmission and Distribution: Latin America Conference and Exposition, pp.1–6 (2012)Google Scholar
  2. 2.
    Fialho, L., Melício, R., Mendes, V.M.F.: PV system modeling by five parameters and in situ test. In: 22th SPEEDAM, pp. 577–582 (2014)Google Scholar
  3. 3.
    Rampinelli, G.A., Krenzinger, A., Chenlo Romero, F.: Mathematical Models for Efficiency of Inverters Used in Grid Connected Photovoltaic Systems. Renewable and Sustainable Energy Reviews 34, 578–587 (2014)CrossRefGoogle Scholar
  4. 4.
    Batista, N.C., Melício, R., Mendes, V.M.F.: Layered Smart Grid Architecture Approach and Field Tests by ZigBee Technology. Energy Conversion and Management 79, 721–730 (2014)CrossRefGoogle Scholar
  5. 5.
    Papageorgas, P., Piromalis, D., Antonakoglou, K., Vokas, G., Tseles, D., Arvanitis, K.G.: Smart Solar Panels: In-situ monitoring of photovoltaic panels based on wired and wireless sensor networks. Energy Procedia 36, 535–545 (2013)CrossRefGoogle Scholar
  6. 6.
    Ayodele, T.R., Jimoh, A.A., Munda, J.L., Agee, J.T.: Challenges of Grid Integration of Wind Power on Power System Grid Integrity: a Review. International Journal of Renewable Energy Research 2, 618–626 (2012)Google Scholar
  7. 7.
    Raj, J.S.C.M., Jeyakumar, A.E.: A Two Stage Successive Estimation Based Maximum Power Point Tracking Technique for Photovoltaic Modules. Solar Energy 103, 43–61 (2014)CrossRefGoogle Scholar
  8. 8.
    Fialho, L., Melício, R., Mendes, V.M.F., Rodrigues, L., Viana, S., Estanqueiro, A.: Simulation of a-Si PV system linked to the grid by DC-DC boost and two-level converter. In: 16th PEMC, pp. 934–938 (2014)Google Scholar
  9. 9.
    Seixas, M., Melício, R., Mendes, V.M.F.: Fifth Harmonic and Sag Impact with a Balancing New Strategy for Capacitor Voltages. Energy Conversion and Management 79, 721–730 (2014)CrossRefGoogle Scholar
  10. 10.
    Giacobbe, L.: Validação de Modelos Matemáticos de Componentes de Sistemas Fotovoltaicos. Master Thesis, DEEC/IST (2005) (in Portuguese)Google Scholar
  11. 11.
    IEC 60904-1: Photovoltaic devices - Part 1: Measurement of Photovoltaic (PV) Current-Voltage Characteristics (2006)Google Scholar
  12. 12.
    Kaneka Photovoltaic Products Information.

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • L. Fialho
    • 1
    • 2
  • R. Melício
    • 1
    • 2
    Email author
  • V. M. F. Mendes
    • 2
    • 3
  • M. Collares-Pereira
    • 2
  1. 1.IDMEC/LAETA, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Universidade de ÉvoraÉvoraPortugal
  3. 3.Instituto Superior of Engenharia de LisboaLisbonPortugal

Personalised recommendations