Development of a Simulink Model of a Saturated Cores Superconducting Fault Current Limiter

  • Nuno VilhenaEmail author
  • Pedro Arsénio
  • João Murta-Pina
  • Anabela Gonçalves Pronto
  • Alfredo Álvarez
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 450)


Superconducting fault current limiters are considered as emerging devices for the advent of modern power grids. Those limiters as well as other electric power grid applications have been developed in the last years in order to support the increased penetration of dispersed generation. The development of such limiters requires new design tools that allows to simulate those devices in electrical power grids with different voltage ratings and characteristics. This work presents a methodology to simulate the behaviour of saturated core type limiters based on its characteristic curves. A prototype is tested to obtain its characteristic and then the methodology is implemented in Simulink. The simulation carried out by the proposed methodology is compared with a real test.


Fault current limiters Saturated-core fault current limiters Modern power grids Smart grids Short-circuit currents Superconductivity 


  1. 1.
    Moon, W., Won, J., Huh, J., Kim, J.: A Study on the Application of a Superconducting Fault Current Limiter for Energy Storage Protection in a Power Distribution System. IEEE Trans. Appl. Supercond. 23, 5603404 (2013)CrossRefGoogle Scholar
  2. 2.
    Lee, P.J.: Applications and Related Technology. Engineering superconductivity, p. 391. John Wiley & Sons, Inc. (2001)Google Scholar
  3. 3.
    Raju, B.P., Parton, K.C., Bartram, T.C.: A Current Limiting Device Using Superconducting D.C. Bias Applications and Prospects. IEEE Power Eng. Rev. PER-2, 34–35 (1982)CrossRefGoogle Scholar
  4. 4.
    Moriconi, F., De La Rosa, F., Darmann, F., Nelson, A., Masur, L.: Development and Deployment of Saturated-Core Fault Current Limiters in Distribution and Transmission Substations. IEEE Trans. Appl. Supercond. 21, 1288–1293 (2011)CrossRefGoogle Scholar
  5. 5.
    Xin, Y., Gong, W., Niu, X., Cao, Z., Zhang, J., Tian, B., Xi, H., Wang, Y.: Development of Saturated Iron Core HTS Fault Current Limiters. IEEE Trans. Appl. Supercond. 17, 1760–1763 (2007)CrossRefGoogle Scholar
  6. 6.
    Xin, Y., Gong, W.Z., Sun, Y.W., Cui, J.B., Hong, H., Niu, X.Y., Wang, H.Z., Wang, L.Z., Li, Q., Zhang, J.Y., Wei, Z.Q., Liu, L., Yang, H., Zhu, X.H.: Factory and Field Tests of a 220 kV/300 MVA Statured Iron-Core Superconducting Fault Current Limiter. IEEE Trans. Appl. Supercond. 23, 5602305 (2013)CrossRefGoogle Scholar
  7. 7.
    Shahbazi, Y., Niayesh, K., Mohseni, H.: Finite element methode analysis of performance of inductive saturable-core fault current limiter. In: 2011 1st International Conference on Electric Power Equipment - Switching Technology, pp. 352–355. IEEE (2011)Google Scholar
  8. 8.
    Pina, J.M., Suárez, P., Neves, M.V., Álvarez, A., Rodrigues, A.L.: Reverse engineering of inductive fault current limiters. J. Phys. Conf. Ser. 234, 032047 (2010)CrossRefGoogle Scholar
  9. 9.
    Pina, J.M., Pereira, P., Pronto, A., Arsénio, P., Silva, T.: Modelling and Simulation of Inductive Fault Current Limiters. Phys. Procedia. 36, 1248–1253 (2012)CrossRefGoogle Scholar
  10. 10.
    Arsenio, P., Silva, T., Vilhena, N., Pina, J.M., Pronto, A.: Analysis of Characteristic Hysteresis Loops of Magnetic Shielding Inductive Fault Current Limiters. IEEE Trans. Appl. Supercond. 23, 5601004 (2013)CrossRefGoogle Scholar
  11. 11.
    Vilhena, N., Arsenio, P., Pina, J., Pronto, A., Alvarez, A.: A methodology for modelling and simulation of saturated cores fault current limiters. IEEE Trans. Appl. Supercond., 1–1 (2014)Google Scholar
  12. 12.
    Bitzer, B., Gebretsadik, E.S.: Cloud computing framework for smart grid applications. In: 2013 48th International Universities’ Power Engineering Conference (UPEC), pp. 1–5. IEEE (2013)Google Scholar
  13. 13.
    Behzadirafi, S., Salehfar, H.: Using superconducting fault current limiters to enhance the reliability of power transmission systems. In: IEEE PES General Meeting, pp. 1–8. IEEE (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Nuno Vilhena
    • 1
    Email author
  • Pedro Arsénio
    • 1
  • João Murta-Pina
    • 1
  • Anabela Gonçalves Pronto
    • 1
  • Alfredo Álvarez
    • 2
  1. 1.CTS, Uninova, Departamento de Engenharia Electrotécnica, Faculdade de Ciências e Tecnologia, FCTUniversidade Nova de LisboaCaparicaPortugal
  2. 2.“Benito Mahedero” Group of Electrical Applications of Superconductors, Escuela de Ingenierías IndustrialesUniversidad de ExtremaduraBadajozSpain

Personalised recommendations