Advertisement

Combined Operation of an Unified Power Quality Conditioner and a Superconducting Magnetic Energy Storage System for Power Quality Improvement

  • Nuno AmaroEmail author
  • Luís Casimiro
  • João Murta Pina
  • João Martins
  • José M. Ceballos
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 450)

Abstract

Superconducting Magnetic Energy Storage (SMES) is a class of promising superconducting devices, considering its possible applications in power systems. This paper describes a combination of a SMES with a Unified Power Quality Conditioner (UPQC) for power quality improvement in an electric grid. The SMES device is used to improve the UPQC performance by increasing the stored energy in the DC link. Several power quality faults including voltage sags and current harmonics are simulated and the system behavior is demonstrated. This hybrid system has the advantage of being able to overcome different kinds of power quality faults with higher performance than as a set of individual systems, thus increasing power quality in electric grids.

Keywords

SMES UPQC Power quality 

References

  1. 1.
    EURELECTRIC: Power Quality in European Electricity Supply Networks (2003)Google Scholar
  2. 2.
    Akagi, H.: New trends in active filters for power conditioning. IEEE Trans. Ind. Appl. 32, 1312–1322 (1996)CrossRefGoogle Scholar
  3. 3.
    Akagi, H., Watanabe, E.H., Aredes, M.: Instantaneous Power Theory and Applications to Power Conditioning. John Wiley & Sons Inc., Hoboken (2007)CrossRefGoogle Scholar
  4. 4.
    Rashid, M.H. (ed.) Power Electronics Handbook. Elsevier (2011)Google Scholar
  5. 5.
    Amaro, N., Murta Pina, J., Martins, J., Ceballos, J.M.: SUPERCONDUCTING MAGNETIC ENERGY STORAGE - A Technological Contribute to Smart Grid Concept Implementation. In: Proceedings of the 1st International Conference on Smart Grids and Green IT Systems, pp. 113–120. SciTePress - Science and and Technology Publications (2012)Google Scholar
  6. 6.
    Xiao, L., Dai, S., Lin, L., Zhang, J., Guo, W., Zhang, D., Gao, Z., Song, N., Teng, Y., Zhu, Z., Zhang, Z., Zhang, G., Zhang, F., Xu, X., Zhou, W.: Development of the World’s First HTS Power Substation. IEEE Trans. Appl. Supercond. 22, 5000104–5000104 (2012)CrossRefGoogle Scholar
  7. 7.
    Tixador, P., Deleglise, M., Badel, A., Berger, K., Bellin, B., Vallier, J.C., Allais, A., Bruzek, C.E.: First Tests of a 800 kJ HTS SMES. IEEE Trans. Appl. Supercond. 18, 774–778 (2008)Google Scholar
  8. 8.
    Kim, H.J., Seong, K.C., Cho, J.W., Bae, J.H., Sim, K.D., Kim, S., Lee, E.Y., Ryu, K., Kim, S.H.: 3 MJ/750 kVA SMES System for Improving Power Quality. IEEE Trans. Appl. Supercond. 16, 574–577 (2006)CrossRefGoogle Scholar
  9. 9.
    Xian, W., Yuan, W., Yan, Y., Coombs, T. A.: Minimize frequency fluctuations of isolated power system with wind farm by using superconducting magnetic energy storage. In: PEDS Conference, pp. 1329–1332. IEEE (2009)Google Scholar
  10. 10.
    Aware, M., Sutanto, D.: SMES for Protection of Distributed Critical Loads. IEEE Trans. Power Deliv. 19, 1267–1275 (2004)CrossRefGoogle Scholar
  11. 11.
    Tixador, P., Bellin, B., Deleglise, M., Vallier, J.C., Bruzek, C.E., Allais, A., Saugrain, J.M.: Design and First Tests of a 800 kJ HTS SMES. IEEE Trans. Appl. Supercond. 17, 1967–1972 (2007)CrossRefGoogle Scholar
  12. 12.
    Torre, W., Eckroad, S.: Improving power delivery through the application of superconducting magnetic energy storage (SMES). In: 2001 IEEE Power Engineering Society Winter Meeting, Conference Proceedings (Cat. No.01CH37194), pp. 81–87. IEEE (2001)Google Scholar
  13. 13.
    Chen, L., Liu, Y., Arsoy, A.B., Ribeiro, P.F., Steurer, M., Iravani, M.R.: Detailed Modeling of Superconducting Magnetic Energy Storage (SMES) System. IEEE Trans. Power Deliv. 21, 699–710 (2006)CrossRefGoogle Scholar
  14. 14.
    EPRI: West Coast Utility Transmission Benefits Of Superconducting Magnetic Energy Storage (1996)Google Scholar
  15. 15.
    IEA, (International Energy Agency): Smart Grids - Technology Roadmap (2011)Google Scholar
  16. 16.
    Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power Energy Mag. 7, 52–62 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhang, P., Li, F., Bhatt, N.: Next-Generation Monitoring, Analysis, and Control for the Future Smart Control Center. IEEE Trans. Smart Grid. 1, 186–192 (2010)CrossRefGoogle Scholar
  18. 18.
    Markovic, D.S., Zivkovic, D., Branovic, I., Popovic, R., Cvetkovic, D.: Smart power grid and cloud computing. Renew. Sustain. Energy Rev. 24, 566–577 (2013)CrossRefGoogle Scholar
  19. 19.
    Yigit, M., Gungor, V.C., Baktir, S.: Cloud Computing for Smart Grid applications. Comput. Networks 70, 312–329 (2014)CrossRefGoogle Scholar
  20. 20.
    Nielsen, J.G., Blaabjerg, F.: A Detailed Comparison of System Topologies for Dynamic Voltage Restorers. IEEE Trans. Ind. Appl. 41, 1272–1280 (2005)CrossRefGoogle Scholar
  21. 21.
    Teke, A.: Unified Power Quality Conditioner: Design, Simulation and Experimental Analysis (2011)Google Scholar
  22. 22.
    Amaro, N., Pina, J.M., Martins, J., Ceballos, J.M., Alvarez, A.: A Fast Algorithm for Initial Design of HTS Coils for SMES Applications. IEEE Trans. Appl. Supercond. 23, 4900104–4900104 (2013)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Nuno Amaro
    • 1
    Email author
  • Luís Casimiro
    • 1
  • João Murta Pina
    • 1
  • João Martins
    • 1
  • José M. Ceballos
    • 2
  1. 1.Centre of Technology and Systems, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.“Benito Mahedero” Group of electrical Applications of Superconductors, Escuela de Ingenierías IndustrialesUniversidad de ExtremaduraBadajozSpain

Personalised recommendations