Hammertoes pp 33-55 | Cite as

First Ray Function, Metatarsalgia, and Hammertoes: How Are They Connected?

  • Douglas H. RichieJr


First ray insufficiency has been closely linked to metatarsalgia and less commonly discussed as a cause of digital deformities. Metatarsalgia is often thought to be the result of elongated metatarsals. Increased pressure under an elongated metatarsal has been speculated to cause attrition and eventual rupture of the plantar plate of the lesser metatarsophalangeal joint (MTPJ), leading to hammertoe or crossover toe deformity. While the interconnection between first ray insufficiency, metatarsalgia, and digital deformity has been well accepted, scrutiny of the literature shows conflicting evidence of support. Hypermobility of the first ray using standard clinical measures has not been demonstrated in any condition other than hallux valgus. Hypermobility of the first ray has been recognized to be a result, rather than a cause, of hallux valgus deformity. Therefore, metatarsalgia can be a common complaint in hallux valgus patients. In the absence of hallux valgus, a plantarflexed metatarsal is a logical cause of metatarsalgia. Digital deformities can cause plantarflexed metatarsals. Instability of the first ray and metatarsalgia can result from rearfoot and midfoot dysfunction. Pronation of the rearfoot and unlocking of the calcaneal-cuboid joint will compromise the dynamic stabilization of the first ray contributed by the peroneus longus muscle as well as the plantar aponeurosis. Instability of the first ray in this circumstance will transmit center of pressure laterally during terminal stance, shifting from a high-gear to a low-gear toe off. Engaging a less-efficient windlass mechanism through the lesser MTPJs compromises overall stability of the medial longitudinal arch. Low-gear push-off also can cause overload of the lesser MTPs, increasing plantar pressure, increasing the risk of metatarsalgia, and development of digital deformity.


Bunion Foot deformities Metatarsal Toe joint Metatarsophalangeal joint Hammertoe syndrome 


  1. 1.
    O’Kane C, Kilmartin TE. The surgical management of central metatarsalgia. Foot Ankle Int. 2002;23:415–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Coughlin MJ. Common causes of pain in the forefoot in adults. J Bone Joint Surg Br. 2000;82:781–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Espinosa N, Maceira E, Myerson MS. Current concept review. Metatarsalgia. Foot Ankle Int. 2008;29:871–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Morton D. Metatarsus atavicus: the identification of a distinctive type of foot disorder. J Bone Joint Surg. 1927;9:531–44.Google Scholar
  5. 5.
    Maestro M, Besse JL, Ragusa M, Berthonnaud E. Forefoot morphotype study and planning method for forefoot osteotomy. Foot Ankle Clin. 2003;8:695–710.PubMedCrossRefGoogle Scholar
  6. 6.
    Slullitel G, Lopez V, Calvi JP, Seletti M, Bartolucci C, Pinton G. Effect of first ray insufficiency and metatarsal index on metatarsalgia in hallux valgus. Foot Ankle Int. 2016;37(3):300–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Coughlin MJ. Crossover second toe deformity. Foot Ankle Int. 1987;8:29–39.CrossRefGoogle Scholar
  8. 8.
    Coughlin MJ. Subluxation and dislocation of the second metatarsophalangeal joint. Orthop Clin North Am. 1989;20:535–51.PubMedGoogle Scholar
  9. 9.
    Deland J, II-Hoon S. The medial crossover toe: a cadaveric dissection. Foot Ankle Int. 2000;21:375–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Thompson FM, Hamilton WG. Problems of the second metatarsophalangeal joint. Orthopedics. 1987;10:83–9.PubMedGoogle Scholar
  11. 11.
    Kaz AJ, Coughlin MJ. Crossover second toe: demographics, etiology, and radio- graphic assessment. Foot Ankle Int. 2007;28:1223–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Myerson MS, Shereff MJ. The pathological anatomy of claw and hammer toes. J Bone Joint Surg Am. 1989;71(1):45–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Hardy R, Clapham J. Observations on hallux valgus. J Bone Joint Surg. 1951;33-B:376–91.CrossRefGoogle Scholar
  14. 14.
    Bhutta MA, Chauhan D, Zubairy AI, Barrie J. Second metatarsophalangeal joint instability and second metatarsal length association depends on the method of measurement. Foot Ankle Int. 2010;31(6):486–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Fleischer AE, Ahmad M, Shah S, Catena F, Weil LS Sr, Weil L Jr. Association of abnormal metatarsal parabola with second metatarsophalangeal joint plantar plate pathology. Foot Ankle Int. 2017;38(3):289–97.PubMedCrossRefGoogle Scholar
  16. 16.
    Nilsonne H. Hallux rigidus and its treatment. Acta Orthop Scand. 1930;1:295–303.CrossRefGoogle Scholar
  17. 17.
    Morton DJ. Structural factors in static disorders of the foot. Am J Surg. 1930;9(2):315–28.CrossRefGoogle Scholar
  18. 18.
    Klein EE, Weil L Jr, Weil LS Sr, Bowen M, Fleischer AE. Positive drawer test combined with radiographic deviation of the third metatarsophalangeal joint suggests high grade tear of the second metatarsophalangeal joint plantar plate. Foot Ankle Spec. 2014;7(6):466–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Postema K, Burm PE, Zande ME, Limbeek J. Primary metatarsalgia: the influence of a custom moulded insole and a rocker bar on plantar pressure. Prosthetics Orthot Int. 1998;22:35–44.Google Scholar
  20. 20.
    Hsi WL, Kang JH, Lee XX. Optimum position of metatarsal pad in metatarsalgia for pressure relief. Am J Phys Med Rehabil. 2005;84:514–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Kang JH, Chen MD, Chen SC, Hsi WL. Correlations between subjective treatment responses and plantar pressure parameters of metatarsal pad treatment in metatarsalgia patients: a prospective study. BMC Musculoskelet Disord. 2006;7:95.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yavuz M, Botek G, Davis BL. Plantar shear stress distributions: comparing actual and predicted frictional forces at the foot–ground interface. J Biomech. 2007;40(13):3045–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yavuz M, Hetherington VJ, Botek G, Hirschman GB, et al. Forefoot plantar shear stress distribution in hallux valgus patients. Gait Posture. 2009;30:257–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Dreeben SM, Noble PC, Hammerman S, Bishop JO, Tullos HS. Metatarsal osteotomy for primary metatarsalgia: radiographic and pedobarographic study. Foot Ankle. 1989;9:214–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaipel M, Krapf D, Wyss C. Metatarsal length does not correlate with maximal peak pressure and maximal force. Clin Orthop Relat Res. 2011;469:1161–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Wanivenhaus A, Brettschneider W. Influence of metatarsal head displacement on metatarsal pressure distribution after hallux valgus surgery. Foot Ankle Int. 1993;14:85–9.CrossRefGoogle Scholar
  27. 27.
    Ledoux WR, Shofer JB, Ahroni JH, Smith DG, Sangeorzan BJ, Boyko EJ. Biomechanical differences among pes cavus, neutrally aligned, and pes planus feet in subjects with diabetes. Foot Ankle Int. 2003;24:845–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Crosbie J, Burns J, Ouvrier RA. Pressure characteristics in painful pes cavus feet resulting from Charcot-Marie-Tooth disease. Gait Posture. 2008;28:545–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Jung HG, Zaret DI, Parks BG, Schon LC. Effect of first meta- tarsal shortening and dorsiflexion osteotomies on forefoot plantar pressure in a cadaver model. Foot Ankle Int. 2005;26:748–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Van Beek C, Greisberg J. Mobility of the first ray: review article. Foot Ankle Int. 2011;32(9):917–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Saltzman CL, Nawoczenski DA. Complexities of foot architecture as a base of support. J Orthop Sports Phys Ther. 1995;21:354–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Olson T, Seidel MR. The evolutionary basis of some clinical disorders of the human foot: a comparative survey of the living primates. Foot Ankle Int. 1983;3(6):322–41.CrossRefGoogle Scholar
  33. 33.
    Hicks JH. The mechanics of the foot. Part I: the joints. J Anat. 1953;87(4):345–57.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Cornwall MW, McPoil TG. Motion of the calcaneus, navicular and first metatarsal during the stance phase of gait. J Am Podiatr Med Assoc. 92:67, 2002–76.Google Scholar
  35. 35.
    Kelso SF, Richie DH Jr, Cohen IR, Weed JH, Root ML. Direction and range of motion of the first ray. J Am Podiatr Med Assoc. 1982;72(12):600–5.CrossRefGoogle Scholar
  36. 36.
    Johnson C, Christensen JC. Biomechanics of the first ray part 1. The effects of the peroneus longus function. A three dimensional kinematic study on a cadaver model. J Foot Ankle Surg. 1999;38(5):313–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Perez HR, Leon KR, Jeffrey CC. The effect of frontal plane position on first ray motion: Forefoot locking mechanism. Foot Ankle Int. 2008;29(1):72–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Morton D. Hypermobility of the first metatarsal bone: the interlinking factor between metatarsalgia and longitudinal arch strains. J Bone Joint Surg. 1928;10:187–96.Google Scholar
  39. 39.
    Allen MK, Cuddeford TJ, Glasoe WM, DeKam LM, Lee PJ, Wagner KJ, Yack HJ. Relationship between static mobility of the first ray and first ray, midfoot, and hindfoot motion during gait. Foot Ankle Int. 2004;25:391–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Glasoe WM, Yack HJ, Saltzman CL. Measuring first ray mobility with a new device. Arch Phys Med Rehabil. 1999;80:122–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Grebing BR, Coughlin MJ. The effect of ankle position on the exam for first ray mobility. Foot Ankle Int. 2004;25:467–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Rush SM, Christensen JC, Johnson CH. Biomechanics of the first ray. Part 2: metatarsus primus varus as a cause of hypermobility. A three-dimensional kinematic analysis in a cadaver model. J Foot Ankle Surg. 2000;39(2):68–77.PubMedCrossRefGoogle Scholar
  43. 43.
    Lapidus PW. Operative correction of the metatarsus varus primus in hallux valgus. Surg Gynecol Obstet. 1934;58:183–91.Google Scholar
  44. 44.
    Hansen ST. Hallux valgus surgery: Morton and Lapidus were right! Clin Podiatr Med Surg. 1996;13(3):347–354, 1996.PubMedGoogle Scholar
  45. 45.
    Hofbauer MH, Grossman JP. The Lapidus procedure. Clin Podiatr Med Surg. 1996;13(3):485–96.PubMedGoogle Scholar
  46. 46.
    Gellman H, Lenihan M, Halikis N, Botte MJ, Giordani M, Perry J. Selective tarsal arthrodesis: an in vitro analysis of the effect on foot motion. Foot Ankle Int. 1987;8(3):127–33.CrossRefGoogle Scholar
  47. 47.
    Ouzounian TJ, Shereff MJ. In vitro determination of midfoot function. Foot Ankle Int. 1989;10(3):140–6.CrossRefGoogle Scholar
  48. 48.
    Roling BA, Christensen JC, Johnson CH. Biomechanics of the first ray. Part IV: the effect of selected medial column arthrodeses. A three- dimensional kinematic analysis in a cadaver model. J Foot Ankle Surg. 2002;41:278–85.PubMedCrossRefGoogle Scholar
  49. 49.
    Feibel JB, Tisdel CL, Donley BG. Lesser metatarsal osteotomies. A biomechanical approach to metatarsalgia. Foot Ankle Clin. 2001;6:473–89.PubMedCrossRefGoogle Scholar
  50. 50.
    Glasoe WM, Allen MK, Kepros T, Stonewall L, Ludewig PM. Dorsal first ray mobility in women athletes with a history of stress fracture of the second or third metatarsal. J Orthop Sports Phys Ther. 2001;32:560–5.CrossRefGoogle Scholar
  51. 51.
    Weinfeld SB, Haddad SL, Myerson MS. Metatarsal stress fractures. Clin Sports Med. 1997;16:319–38.PubMedCrossRefGoogle Scholar
  52. 52.
    Coughlin MJ. Hallux valgus. J Bone Joint Surg Am. 1996;78:932–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Helal B, Rowley DI, Cracchiolo A, Myerson MS. Hallux valgus and rigidus. In: Surgery of disorders of the foot and ankle. 1st ed. London: Lippincott-Raven; 1996. p. 303–26.Google Scholar
  54. 54.
    Thomas S, Barrington R. Hallux valgus. Curr Orthop. 2003;17:299–307.CrossRefGoogle Scholar
  55. 55.
    Saltzman CL, Aper RL, Brown TD. Anatomic determinants of first metatarsophalangeal flexion moments in hallux valgus. Clin Orthop Relat Res. 1997;339:261–9.CrossRefGoogle Scholar
  56. 56.
    Root ML, Orien WP, Weed JH. Normal and abnormal function of the foot. In:Clinical biomechanics. 1st ed. Los Angeles: Clinical Biomechanics Corporation. p. 1977.Google Scholar
  57. 57.
    Klaue K, Hansen ST, Masquelet AC. Clinical, quantitative assessment of first tarsometatarsal mobility in the sagittal plane and its relation to hallux valgus deformity. Foot Ankle Int. 1994;15(1):9–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Dietze A, Bahlke U, Martin H, Mittlmeier T. First ray instability in hallux valgus deformity: a radiokinematic and pedobarographic analysis. Foot Ankle Int. 2013;34:124–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Glasoe WM, Allen MK, Saltzman CL. First ray dorsal mobility in relation to hallux valgus deformity and first intermetatarsal angle. Foot Ankle Int. 2001;22:98–101.PubMedCrossRefGoogle Scholar
  60. 60.
    Shibuya N, Roukis TS, Jupiter DC. Mobility of the first ray in patients with or without hallux valgus deformity: systematic review and meta-analysis. J Foot Ankle Surg. 2017;56:1070–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Coughlin MJ, Jones CP, Viladot R, Golano P, Grebing BR, Kennedy MJ, Shurnas PS, Alvarez F. Hallux valgus and first ray mobility: a cadaveric study. Foot Ankle Int. 2004;25:537–44.PubMedCrossRefGoogle Scholar
  62. 62.
    Faber FW, Mulder PG, Verhaar JA. Role of first ray hypermobility in the outcome of the Hohmann and the Lapidus procedure: a prospective, randomized trial involving one hundred and one feet. J Bone Joint Surg Am. 2004;86-A:486–95.PubMedCrossRefGoogle Scholar
  63. 63.
    Coughlin MJ, Jones CP. Hallux valgus and first ray mobility: a prospective study. J Bone Joint Surg Am. 2007;89:1887–98.PubMedGoogle Scholar
  64. 64.
    Kim JY, Park JS, Hwang SK, Young KW, Sung IH. Mobility changes of the first ray after hallux valgus surgery: clinical results after proximal metatarsal chevronosteotomy and distal soft tissue procedure. Foot Ankle Int. 2008;29:468–79.PubMedCrossRefGoogle Scholar
  65. 65.
    Faber FW, van Kampen PM, Bloembergen MW. Long-term results of the Hohmann and Lapidus procedure for the correction of hallux valgus: a prospective, randomised trial with eight- to 11-year follow-up involving 101 feet. Bone Joint J. 2013;95-B:1222–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Faber FW, Kleinrensink GJ, Verhoog MW, Vijn AH, Snijders CJ, Mulder PG, Verhaar JA. Mobility of the first tarsometatarsal joint in relation to hallux valgus deformity: anatomical and biomechanical aspects. Foot Ankle Int. 1999;20:651–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Roukis TS, Scherer PR, Anderson CF. Position of the first ray and motion of the first metatarsophalangeal joint. J Am Podiatr Med Assoc. 1996;86:538–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Roukis TS. Metatarsus primus elevatus in hallux rigidus: fact or fiction? J Am Podiatr Med Assoc. 2005;95:221–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Coughlin MJ, Shurnas PS. Hallux rigidus: demographics, etiology, and radiographic assessment. Foot Ankle Int. 2003;24:731–43.PubMedCrossRefGoogle Scholar
  70. 70.
    Horton GA, Park YW, Myerson MS. Role of metatarsus primus elevatus in the pathogenesis of hallux rigidus. Foot Ankle Int. 1999;20:777–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Greisberg J, Sperber L, Prince DE. Mobility of the first ray in various foot disorders. Foot Ankle Int. 2012;33:44–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Coughlin M, Jones C. Hallux Valgus; demographics, etiology and radiographic assessment. Foot Ankle Int. 2007;28:759–77.PubMedCrossRefGoogle Scholar
  73. 73.
    Meyer JM, Tomeno B, Burdet A. Metatarsalgia due to insufficient support by the first ray. Int Orthop. 1981;5:193–201.PubMedCrossRefGoogle Scholar
  74. 74.
    Grebing BR, Coughlin MJ. Evaluation of Morton’s theory of second metatarsal hypertrophy. J Bone Joint Surg Am. 2004;86-A(7):1375–84.PubMedCrossRefGoogle Scholar
  75. 75.
    Cooper AJ, Clifford PD, Parikh VK, Steinmetz ND, Mizel MS. Instability of the first metatarsal-cuneiform joint: diagnosis and discussion of an independent pain generator in the foot. Foot Ankle Int. 2009;30(10):928–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Mueller MJ, Strube MJ. Generalizability of in-shoe peak pressure measures using the f-scan system. Clin Biomech. 1996;11:159–64.CrossRefGoogle Scholar
  77. 77.
    Abouaesha F, van Schie C, Griffths G, Young R, Boulton A. Plantar tissue thickness is related to peak plantar pressure in the high-risk diabetic foot. Diabetes Care. 2001;24:1270–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Waldecker U. Pedographicanalysis of hallux valgus deformity. Foot Ankle Surg. 2004;10:121–4.CrossRefGoogle Scholar
  79. 79.
    Nyska M, Liberson A, McCabe C, Linge K, Klenerman L. Plantar foot pressure distribution in patients with hallux valgus treated by distal soft tissue procedure and proximal metatarsal osteotomy. Foot Ankle Surg. 1998;4:35–41.CrossRefGoogle Scholar
  80. 80.
    Kernozek TW, Elfessi A, Sterriker S. Clinical and biomechanical risk factors of patients diagnosed with hallux valgus. J Am Podiatr Med Assoc. 2003;93:97–103.PubMedCrossRefGoogle Scholar
  81. 81.
    Bryant A, Tinley P, Singer K. Plantar pressure distribution in normal, hallux valgus and hallux limitus feet. Foot. 1999;9:115–9.CrossRefGoogle Scholar
  82. 82.
    Mickle KJ, Munro BJ, Lord SR, Menz HB, Steele JR. Gait, balance and plantar pressures in older people with toe deformities. Gait Posture. 2011;34:347–51.PubMedCrossRefGoogle Scholar
  83. 83.
    Mueller MJ, et al. Forefoot structural predictors of plantar pressures during walking in people with diabetes and peripheral neuropathy. J Biomech. 2003;36:1009–17.PubMedCrossRefGoogle Scholar
  84. 84.
    Branch HE. Pathologic dislocation of the second toe. J Bone Joint Surg. 1937;19:978–84.Google Scholar
  85. 85.
    Coughlin MJ. Lesser toe deformities. Orthopaedics. 1987;10(1):63–75.Google Scholar
  86. 86.
    Yu GV, Judge MS, Hudson JR, Seidelmann FE. Predislocationsyndrome:progressive subluxation/dislocation of the lesser metatarsophalangeal joint. J Am Podiatr Med Assoc. 2002;92:182–99.PubMedCrossRefGoogle Scholar
  87. 87.
    Shirzad K, Kiesau CD, DeOrio JK, Parekh SG. Lesser toe deformities. J Am Acad Orthop Surg. 2011;19:505–14.PubMedCrossRefGoogle Scholar
  88. 88.
    Gribbin CK, Ellis SJ, Nguyen J, Williamson E, Cody EA. Relationship of radiographic and clinical parameters with hallux valgus and second ray pathology. Foot Ankle Int. 2017;38(1):14–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Ahroni JH, Boyko EJ, Forsberg RC. Clinical correlates of plantar pressure among diabetic veterans. Diabetes Care. 1999;22:965–72.PubMedCrossRefGoogle Scholar
  90. 90.
    Bus S, Maas M, de Lange A, Michels R, Levi M. Elevated plantar pressures in neuropathic diabetic patients with claw/hammer toe deformity. J Biomech. 2005;38:1918–25.PubMedCrossRefGoogle Scholar
  91. 91.
    Lavery LA, Armstrong DG, Vela SA, Quebedeaux TL, Fleischli JG. Practical criteria for screening patients at high risk for diabetic foot ulceration. Arch Intern Med. 1998;158:157–62.PubMedCrossRefGoogle Scholar
  92. 92.
    Holewski JJ, Moss KM, Stess RM, Graf PM, Grunfeld C. Prevalence of foot pathology and lower extremity complications in a diabetic outpatient clinic. J Rehabil Res Dev. 1989;26:35–44.PubMedGoogle Scholar
  93. 93.
    Rozema A, Ulbrecht JS, Pammer SE, Cavanagh PR. In-shoe plantar pressures during activities of daily living: implications for therapeutic footwear design. Foot Ankle Int. 1996;17(6):352–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Menz HB, Lord SR. Foot pain impairs balance and functional ability in com- munity-dwelling older people. J Am Podiatr Med Assoc. 2001;91:222–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Leardini A, Benedetti MG, Catani F, Simoncini L, Giannini S. An atomically based protocol for the description of foot segment kinematics during gait. Clin Biomech. 1999;14:528–36.CrossRefGoogle Scholar
  96. 96.
    Nester CJ, Liu AM, Ward E, Howard D, Cocheba J, Derrick T, Patterson P. In vitro study of foot kinematics using a dynamic walking cadaver model. J Biomech. 2007;40:1927–37.PubMedCrossRefGoogle Scholar
  97. 97.
    Bus SA, Maas M, Cavanagh PR, Michels RP, Levi M. Plantar fat-pad displacement in neuropathic diabetic patients with toe deformity: a magnetic resonance imaging study. Diabetes Care. 2004;27(10):2376–81.PubMedCrossRefGoogle Scholar
  98. 98.
    Bojsen-Moller F. Anatomy of the forefoot, normal and pathologic. Clin Orthop Relat Res. 1979;142:10–8.Google Scholar
  99. 99.
    Bojsen-Moller F, Flagstad KE. Plantar aponeurosis and internal architecture of the ball of the foot. J Anat. 1976;121:599–611.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Stainsby GD. Pathological anatomy and dynamic effect of the displaced plantar plate and the importance of the integrity of the plantar plate- deep transverse metatarsal ligament tie-bar. Ann R Coll Surg Engl. 1997;79(1):58–68.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Hamel AJ, Donahue SW, Sharkey NA. Contributions of active and passive toe flexion to forefoot loading. Clin Orthop Relat Res. 2001;(393):326–34.Google Scholar
  102. 102.
    Bojsen-Møller F. Calcaneocuboid joint and stability of the longitudinal arch of the foot at the high gear and low gear push off. J Anat. 1979;129:165–76.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Galica A, Hagedorn TJ, Dufour AB, Riskowski JL, Hillstrom HJ, Casey VA, Hannan MT. Hallux valgus and plantar pressure loading: the Framingham foot study. J Foot Ankle Res. 2013;6:1–18.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Douglas H. RichieJr
    • 1
  1. 1.Department of BiomechanicsCalifornia School of Podiatric Medicine at Samuel Merritt UniversityOaklandUSA

Personalised recommendations