Advertisement

Hammertoes pp 21-31 | Cite as

Biomechanics of Hammertoes

  • Jeffrey C. Christensen
  • Eric G. Powell
Chapter

Abstract

The biomechanics of hammertoes is often underappreciated when it comes to the grand scheme of foot mechanics. Nevertheless, the toes through the action of the windlass and reverse windlass modulate foot stiffness both in stance and propulsion. The hammertoe is one of the most common digital deformities. While etiology is multifactorial, the hammertoe has a spectrum of deformity. In early stages, the condition is flexible, while in the later stages, the toe stiffens and can lead to eventual attenuation or rupture of the plantar plate. The final stage of the deformity involved dislocation of the metatarsophalangeal joint. A sound understanding of digital biomechanics is helpful in the successful management of digital deformities.

Keywords

Windlass mechanism Hammertoe Plantar plate Reverse windlass 

References

  1. 1.
    Hannan MT, Menz HB, Jordan JM, et al. High heritability of hallux valgus and lesser toe deformities in adult men and women. Arthritis Care Res (Hoboken). 2013;65:1515–21.CrossRefGoogle Scholar
  2. 2.
    Schnepp KH. Hammer-toe and claw foot. Am J Surg. 1937;36:351–9.CrossRefGoogle Scholar
  3. 3.
    Smith BW, Coughlin MJ. Disorders of the lesser toes. Sports Med Arthrosc Rev. 2009;17:167–74.CrossRefGoogle Scholar
  4. 4.
    Morris JL. Biomechanical implications of hammertoe deformities. Clin Podiatr Med Surg. 1986;3:339–46.PubMedGoogle Scholar
  5. 5.
    Shirzad K, Kiesau CD, DeOrio JK, Parekh SG. Lesser toe deformities. J Acad Orthop Surg. 2011;19:505–14.CrossRefGoogle Scholar
  6. 6.
    Coughlin MJ. Lesser toe abnormalities. AAOS Instr Course Lect. 2003;52:421–44.Google Scholar
  7. 7.
    Hughs J, Clark P, Klenerman L. Importance of the toes in walking. J Bone Joint Surg. 1990;72-B:245–51.CrossRefGoogle Scholar
  8. 8.
    Caravaggi P, Pataky T, Goulermas JY, et al. A dynamic model of the windlass mechanism of the foot: evidence for early stance phase preloading of the plantar apponeurosis. J Exp Biol. 2009;212:2491–9.CrossRefGoogle Scholar
  9. 9.
    Song S, LaMontagna C, Collins SH, Geyer H. The effect of foot compliance encoded in the windlass mechanism on the energetics of human walking. 35th Annual Internaltiona Conference of the IEEE EMBS; 2013. p. 3179–3182.Google Scholar
  10. 10.
    Hicks JH. The mechanics of the foot II. The plantar aponeurosis and the arch. J Anat. 1954;88:25–31.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lambrinudi C. Deformities of the toes. Clin J. 1935;64:57–61.Google Scholar
  12. 12.
    Gefen A. Stress analysis of the standing foot following surgical plantar fascia release. J Biomech. 2002;35:629–37.CrossRefGoogle Scholar
  13. 13.
    Sharkey NA, Donahue SW, Ferris L. Biomechanical consequences of plantar fascia release or rupture during gait. Part II: alterations in forefoot loading. Foot Ankle Int. 1999;20:86–96.CrossRefGoogle Scholar
  14. 14.
    Sharkey NA, Ferris L, Smith TS, Matthews DK. Strain and loading of the second metatarsal during heel lift. J Bone Joint Surg. 1995;77-A:1050–7.CrossRefGoogle Scholar
  15. 15.
    Barca F, Acciaro AL. Surgical correction of crossover deformity of the second toe: A technique for tenodesis. Foot Ankle Int. 2004;25:620–4.CrossRefGoogle Scholar
  16. 16.
    Bhatia D, Myerson MS, Curtis MJ, et al. Anatomical retraints to dislocation of the second metatarsophalangeal joint and assessment of a repair technique. J Bone Joint Surg. 1994;76-A:1371–5.CrossRefGoogle Scholar
  17. 17.
    Deland JT, Lee KT, Sobel M, DiCarlo EF. Anatomy of the plantar plate and its attachments in the lesser metatarsal phalangeal joint. Foot Ankle Int. 1995;16:480–6.CrossRefGoogle Scholar
  18. 18.
    Ford LA, Collins KB, Christensen JC. Stabilization of the subluxed second metatarsophalangeal joint: flexor tendon transfer versus primary repair of the plantar plate. J Foot Ankle Surg. 1998;37:217–22.CrossRefGoogle Scholar
  19. 19.
    Sarafian SK. Anatomy of the foot and ankle: descriptive, topographic, functional. 2nd ed. Philadelphia: JB Lippincott Company; 1983.Google Scholar
  20. 20.
    Johnston RB III, Smith J, Daniels T. The plantar plate of the lesser toes: an anatomical study in human cadavers. Foot Ankle Int. 1997;15:276–82.CrossRefGoogle Scholar
  21. 21.
    Stainsby GD. Pathological anatomy and dynamic effect of the displaced plantar plate and the importance of the inegrity of the plantar plate -deep transverse metatarsal ligament tie-bar. Ann R Coll Surg Engl. 1997;79:58–68.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Myerson MS, Shereff MJ. The pathological anatomy of claw and hammer toes. J Bone Joint Surg. 1989;71-A:45–9.CrossRefGoogle Scholar
  23. 23.
    McGlamry ED. Floating toe syndrome. J Am Podiatry Assoc. 1982;72:561–8.CrossRefGoogle Scholar
  24. 24.
    Migues A, Slullitel G, Bilbao F, Carrasco M, Solari G. Floating-toe deformity as a complication of the Weil osteotomy. Foot Ankle Int. 2004;25:609–13.CrossRefGoogle Scholar
  25. 25.
    Perez HR, Reber LK, Christensen JC. The role of passive plantar flexion in floating toes following Weil osteotomy. J Foot Ankle Surg. 2008;47:520–6.CrossRefGoogle Scholar
  26. 26.
    Brodsky JW, Passmore RN, Shabat S. Transection of the plantar plateand the flexor digitorum longus tendon of the fourth toe as a complication of endoscopic treatment of interdigital neuroma. A case report. J Bone Joint Surg. 2004;86:2299–301.CrossRefGoogle Scholar
  27. 27.
    Boberg JS, Willis JJ. Lesser digital deformities: etiology, procedural selection, and arthroplasty. In: Southerland J, Boberg J, Downey M, Nakra A, Rabjohn L, editors. McGlamry’s comprehensive textbook of foot & ankle surgery. 4th ed. Philadelphia: Wolters Kluer/Lippincott Williams & Wilkins; 2013.Google Scholar
  28. 28.
    Kelikian H. Deformities of the lesser toes. In: Hallux valgus, allied deformities of the forefoot, and metatarsalgia. Philadelphia: W. B. Sanders; 1965.Google Scholar
  29. 29.
    Hansen STJ. Functional reconstruction of the foot and ankle. Philadephia: Lippincott Williams & Wilkins; 2000.Google Scholar
  30. 30.
    Rush SM, Christensen JC, Johnson CH. Biomechanics of the First Ray. Part II. Metatarsus primus varus as a case of hypermobility. A three-dimensional kinematic analysis in a cadaver model. J Foot Ankle Surg. 2000;39:68–77.CrossRefGoogle Scholar
  31. 31.
    Morton DJ. The human foot: Its evolution, physiology and functional disorders. New York: Columbia University Press; 1935.Google Scholar
  32. 32.
    Klein EE, Weil L Jr, Weil LS Sr, Knight J. The underlying osseous deformity in plantar plate tears: a radiographic analysis. Foot Ankle Spec. 2012;6:108–18.CrossRefGoogle Scholar
  33. 33.
    Christensen JC, Jennings MM. Normal and abnormal function of the first ray. Clin Podiatr Med Surg. 2009;26:355–71.CrossRefGoogle Scholar
  34. 34.
    Blakeslee TJ, Chan RJ. Chinese bound foot. A literature review and case report. J Am Podiatr Med Assoc. 1986;76:502–5.CrossRefGoogle Scholar
  35. 35.
    Thompson FM, Coughlin MJ. The high price of high-fashion footwear. J Bone Joint Surg. 1994;76-A:1586–93.CrossRefGoogle Scholar
  36. 36.
    Bus SA, Maas M, Michels RP, Levi M. Role of intrinsic muscle atrophy in the etiology of claw toe deformity in diabetic neuropathy may not be as straightforward as widely believed. Diabetes Care. 2009;32:1063–7.CrossRefGoogle Scholar
  37. 37.
    Perry J. Anatomy and biomechanics of the hindfoot. Clin Orthop. 1983;177:9–15.Google Scholar
  38. 38.
    Mueller MJ, Hastings M, Commean PK, et al. Forefoot structural predictors of plantar pressures during walking in people with diabetes and peripheral neuropathy. J Biomech. 2003;36:1009–17.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeffrey C. Christensen
    • 1
  • Eric G. Powell
    • 2
  1. 1.Ankle and Foot Clinics NorthwestEverettUSA
  2. 2.Minor and James Surgical SpecialistsSeattleUSA

Personalised recommendations