Advertisement

Injectable, Biologics, and Stem Cells

  • Mitchell S. Fourman
  • Jay V. Kalawadia
  • James BradleyEmail author
Chapter

Abstract

Joint pain related to osteoarthritis (OA) is often linked to an initial cartilage injury. Immunogenic cartilage breakdown products cause inflammation of the synovium, leading to the release of inflammatory markers and cytokines. Various non-operative modalities exist to help treat patients, ranging from physical therapy, braces, and oral pharmacologic medications. Injectable treatments include intra-articular corticosteroids and viscosupplementation. These treatments are widely accepted, but the literature varies on their reported efficacy. Recently, platelet rich plasma and stem cell injections have emerged as alternative treatment options. The data on these treatment options is in its infantile stages but shows promise for the future.

References

  1. 1.
    Hardy MM, Seibert K, Manning PT, et al. Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum. 2002;46(7):1789–803.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lee AS, Ellman MB, Yan D, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013;527(2):440–7.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bian Q, Wang YJ, Liu SF, et al. Osteoarthritis: genetic factors, animal models, mechanisms, and therapies. Front Biosci (Elite Ed). 2012;4:74–100.CrossRefGoogle Scholar
  4. 4.
    Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39(1–2):237–46.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res. 2004;(427 Suppl):S37–46.CrossRefGoogle Scholar
  6. 6.
    Eyre DR, McDevitt CA, Billingham ME, et al. Biosynthesis of collagen and other matrix proteins by articular cartilage in experimental osteoarthrosis. Biochem J. 1980;188(3):823–37.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Im HJ, Li X, Muddasani P, et al. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes. J Cell Physiol. 2008;215(2):452–63.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Goldring MB. Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep. 2000;2(6):459–65.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hunter DJ, McDougall JJ, Keefe FJ. The symptoms of OA and the genesis of pain. Rheum Dis Clin N Am. 2008;34(3):623–43.CrossRefGoogle Scholar
  10. 10.
    Grigg P, Schaible HG, Schmidt RF. Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J Neurophysiol. 1986;55(4):635–43.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Schaible HG, Schmidt RF. Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol. 1985;54(5):1109–22.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Coderre TJ, Katz J, Vaccarino AL, et al. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain. 1993;52(3):259–85.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Gwilym SE, Keltner JR, Warnaby CE, et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 2009;61(9):1226–34.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Melzack R, Coderre TJ, Katz J, et al. Central neuroplasticity and pathological pain. Ann N Y Acad Sci. 2001;933:157–74.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ballegaard C, Riis RG, Bliddal H, et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study. Osteoarthr Cartil. 2014;22(7):933–40.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hill CL, Gale DG, Chaisson CE, et al. Knee effusions, popliteal cysts, and synovial thickening: association with knee pain in osteoarthritis. J Rheumatol. 2001;28(6):1330–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Roach HI, Aigner T, Soder S, et al. Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets. Curr Drug Targets. 2007;8(2):271–82.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Aigner T, Sachse A, Gebhard PM, et al. Osteoarthritis: pathobiology-targets and ways for therapeutic intervention. Adv Drug Deliv Rev. 2006;58(2):128–49.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Remst DF, Blaney Davidson EN, van der Kraan PM. Unravelling osteoarthritis-related synovial fibrosis: a step closer to solving joint stiffness. Rheumatology (Oxford). 2015;54:1954.CrossRefGoogle Scholar
  20. 20.
    Felson DT, Niu J, Guermazi A, et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum. 2007;56(9):2986–92.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Felson DT, Chaisson CE, Hill CL, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134(7):541–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wood JN. Nerve growth factor and pain. N Engl J Med. 2010;363(16):1572–3.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hochberg MC, Altman RD, April KT, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2012;64(4):465–74.CrossRefGoogle Scholar
  24. 24.
    Jevsevar DS, Brown GA, Jones DL, et al. The American Academy of Orthopaedic Surgeons evidence-based guideline on: treatment of osteoarthritis of the knee, 2nd edition. J Bone Joint Surg Am. 2013;95(20):1885–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lu M, Su Y, Zhang Y, et al. Effectiveness of aquatic exercise for treatment of knee osteoarthritis: systematic review and meta-analysis. Z Rheumatol. 2015;74(6):543–52.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Bressel E, Wing JE, Miller AI, et al. High-intensity interval training on an aquatic treadmill in adults with osteoarthritis: effect on pain, balance, function, and mobility. J Strength Cond Res. 2014;28(8):2088–96.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Waller B, Ogonowska-Slodownik A, Vitor M, et al. Effect of therapeutic aquatic exercise on symptoms and function associated with lower limb osteoarthritis: systematic review with meta-analysis. Phys Ther. 2014;94(10):1383–95.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ashraf A, Zarei F, Hadianfard MJ, et al. Comparison the effect of lateral wedge insole and acupuncture in medial compartment knee osteoarthritis: a randomized controlled trial. Knee. 2014;21(2):439–44.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Manheimer E, Linde K, Lao L, et al. Meta-analysis: acupuncture for osteoarthritis of the knee. Ann Intern Med. 2007;146(12):868–77.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kwon YD, Pittler MH, Ernst E. Acupuncture for peripheral joint osteoarthritis: a systematic review and meta-analysis. Rheumatology (Oxford). 2006;45(11):1331–7.CrossRefGoogle Scholar
  31. 31.
    Foster NE, Thomas E, Barlas P, et al. Acupuncture as an adjunct to exercise based physiotherapy for osteoarthritis of the knee: randomised controlled trial. BMJ. 2007;335(7617):436.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Garfinkel MS, Schumacher HR Jr, Husain A, et al. Evaluation of a yoga based regimen for treatment of osteoarthritis of the hands. J Rheumatol. 1994;21(12):2341–3.PubMedGoogle Scholar
  33. 33.
    Perlman AI, Sabina A, Williams AL, et al. Massage therapy for osteoarthritis of the knee: a randomized controlled trial. Arch Intern Med. 2006;166(22):2533–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Yip YB, Tam AC. An experimental study on the effectiveness of massage with aromatic ginger and orange essential oil for moderate-to-severe knee pain among the elderly in Hong Kong. Complement Ther Med. 2008;16(3):131–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Kang JW, Lee MS, Posadzki P, et al. T'ai chi for the treatment of osteoarthritis: a systematic review and meta-analysis. BMJ Open. 2011;1(1):e000035.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wang C, Schmid CH, Hibberd PL, et al. Tai chi is effective in treating knee osteoarthritis: a randomized controlled trial. Arthritis Rheum. 2009;61(11):1545–53.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ni GX, Song L, Yu B, et al. Tai chi improves physical function in older Chinese women with knee osteoarthritis. J Clin Rheumatol. 2010;16(2):64–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Chou R. Review: acetaminophen reduces pain in hip or knee osteoarthritis by a small amount, but not low back pain. Ann Intern Med. 2015;163(2):Jc10.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Verkleij SP, Luijsterburg PA, Bohnen AM, et al. NSAIDs vs acetaminophen in knee and hip osteoarthritis: a systematic review regarding heterogeneity influencing the outcomes. Osteoarthr Cartil. 2011;19(8):921–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Towheed TE, Maxwell L, Judd MG, et al. Acetaminophen for osteoarthritis. Cochrane Database Syst Rev. 2006;(1):CD004257.Google Scholar
  41. 41.
    Laslett LL, Jones G. Capsaicin for osteoarthritis pain. Prog Drug Res. 2014;68:277–91.PubMedPubMedCentralGoogle Scholar
  42. 42.
    McCarthy GM, McCarty DJ. Effect of topical capsaicin in the therapy of painful osteoarthritis of the hands. J Rheumatol. 1992;19(4):604–7.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Makris UE, Abrams RC, Gurland B, et al. Management of persistent pain in the older patient: a clinical review. JAMA. 2014;312(8):825–36.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lanas A, Boers M, Nuevo J. Gastrointestinal events in at-risk patients starting non-steroidal anti-inflammatory drugs (NSAIDs) for rheumatic diseases: the EVIDENCE study of European routine practice. Ann Rheum Dis. 2015;74(4):675–81.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Richette P, Latourte A, Frazier A. Safety and efficacy of paracetamol and NSAIDs in osteoarthritis: which drug to recommend? Expert Opin Drug Saf. 2015;14(8):1259–68.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Sostek MB, Fort JG, Estborn L, et al. Long-term safety of naproxen and esomeprazole magnesium fixed-dose combination: phase III study in patients at risk for NSAID-associated gastric ulcers. Curr Med Res Opin. 2011;27(4):847–54.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Angiolillo DJ, Datto C, Raines S, et al. Impact of concomitant low-dose aspirin on the safety and tolerability of naproxen and esomeprazole magnesium delayed-release tablets in patients requiring chronic nonsteroidal anti-inflammatory drug therapy: an analysis from 5 phase III studies. J Thromb Thrombolysis. 2014;38(1):11–23.PubMedCrossRefGoogle Scholar
  48. 48.
    American Geriatrics Society Panel on Pharmacological Management of Persistent Pain in Older Persons. Pharmacological management of persistent pain in older persons. J Am Geriatr Soc. 2009;57(8):1331–46.CrossRefGoogle Scholar
  49. 49.
    Dhillon S. Tramadol/paracetamol fixed-dose combination: a review of its use in the management of moderate to severe pain. Clin Drug Investig. 2010;30(10):711–38.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Silverfield JC, Kamin M, Wu SC, et al. Tramadol/acetaminophen combination tablets for the treatment of osteoarthritis flare pain: a multicenter, outpatient, randomized, double-blind, placebo-controlled, parallel-group, add-on study. Clin Ther. 2002;24(2):282–97.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ishimaru D, Sugiura N, Akiyama H, et al. Alterations in the chondroitin sulfate chain in human osteoarthritic cartilage of the knee. Osteoarthr Cartil. 2014;22(2):250–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bruyere O, Reginster JY. Glucosamine and chondroitin sulfate as therapeutic agents for knee and hip osteoarthritis. Drugs Aging. 2007;24(7):573–80.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Rivera F, Bertignone L, Grandi G, et al. Effectiveness of intra-articular injections of sodium hyaluronate-chondroitin sulfate in knee osteoarthritis: a multicenter prospective study. J Orthop Traumatol. 2016;17(1):27–33.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Martel-Pelletier J, Roubille C, Abram F, et al. First-line analysis of the effects of treatment on progression of structural changes in knee osteoarthritis over 24 months: data from the osteoarthritis initiative progression cohort. Ann Rheum Dis. 2015;74(3):547–56.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Rovati LC, Girolami F, D’Amato M, et al. Effects of glucosamine sulfate on the use of rescue non-steroidal anti-inflammatory drugs in knee osteoarthritis: results from the Pharmaco-Epidemiology of GonArthroSis (PEGASus) study. Semin Arthritis Rheum. 2016;45(4 Suppl):S34–41.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kanzaki N, Ono Y, Shibata H, et al. Glucosamine-containing supplement improves locomotor functions in subjects with knee pain: a randomized, double-blind, placebo-controlled study. Clin Interv Aging. 2015;10:1743–53.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sawitzke AD, Shi H, Finco MF, et al. The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial. Arthritis Rheum. 2008;58(10):3183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Fransen M, Agaliotis M, Nairn L, et al. Glucosamine and chondroitin for knee osteoarthritis: a double-blind randomised placebo-controlled clinical trial evaluating single and combination regimens. Ann Rheum Dis. 2015;74(5):851–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Clegg DO, Reda DJ, Harris CL, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med. 2006;354(8):795–808.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sawitzke AD, Shi H, Finco MF, et al. Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT. Ann Rheum Dis. 2010;69(8):1459–64.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hitzeman N, Athale N. Opioids for osteoarthritis of the knee or hip. Am Fam Physician. 2010;81(9):1094.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Posnett J, Dixit S, Oppenheimer B, et al. Patient preference and willingness to pay for knee osteoarthritis treatments. Patient Prefer Adherence. 2015;9:733–44.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Wilson N, Sanchez-Riera L, Morros R, et al. Drug utilization in patients with OA: a population-based study. Rheumatology (Oxford). 2015;54(5):860–7.CrossRefGoogle Scholar
  64. 64.
    Solomon DH, Avorn J, Wang PS, et al. Prescription opioid use among older adults with arthritis or low back pain. Arthritis Care Res. 2006;55(1):35–41.CrossRefGoogle Scholar
  65. 65.
    Bellamy N, Campbell J, Robinson V, et al. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;(2):CD005328.Google Scholar
  66. 66.
    Hepper CT, Halvorson JJ, Duncan ST, et al. The efficacy and duration of intra-articular corticosteroid injection for knee osteoarthritis: a systematic review of level I studies. J Am Acad Orthop Surg. 2009;17(10):638–46.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Creamer P. Intra-articular corticosteroid injections in osteoarthritis: do they work and if so, how? Ann Rheum Dis. 1997;56(11):634–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    D’Acquisto F, Paschalidis N, Raza K, et al. Glucocorticoid treatment inhibits annexin-1 expression in rheumatoid arthritis CD4+ T cells. Rheumatology (Oxford). 2008;47(5):636–9.CrossRefGoogle Scholar
  69. 69.
    Pelletier JP, DiBattista JA, Raynauld JP, et al. The in vivo effects of intraarticular corticosteroid injections on cartilage lesions, stromelysin, interleukin-1, and oncogene protein synthesis in experimental osteoarthritis. Lab Investig. 1995;72(5):578–86.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Pelletier JP, Martel-Pelletier J. In vivo protective effects of prophylactic treatment with tiaprofenic acid or intraarticular corticosteroids on osteoarthritic lesions in the experimental dog model. J Rheumatol Suppl. 1991;27:127–30.PubMedPubMedCentralGoogle Scholar
  71. 71.
    MacMahon PJ, Eustace SJ, Kavanagh EC. Injectable corticosteroid and local anesthetic preparations: a review for radiologists. Radiology. 2009;252(3):647–61.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Blankenbaker DG, De Smet AA, Stanczak JD, et al. Lumbar radiculopathy: treatment with selective lumbar nerve blocks--comparison of effectiveness of triamcinolone and betamethasone injectable suspensions. Radiology. 2005;237(2):738–41.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wright JM, Cowper JJ, Page Thomas DP, et al. The hydrolysis of cortisol 21-esters by a homogenate of inflamed rabbit synovium and by rheumatoid synovial fluid. Clin Exp Rheumatol. 1983;1(2):137–41.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lomonte AB, de Morais MG, de Carvalho LO, et al. Efficacy of triamcinolone hexacetonide versus methylprednisolone acetate intraarticular injections in knee osteoarthritis: a randomized, double-blinded, 24-week study. J Rheumatol. 2015;42:1677.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Stanczak J, Blankenbaker DG, De Smet AA, et al. Efficacy of epidural injections of Kenalog and Celestone in the treatment of lower back pain. AJR Am J Roentgenol. 2003;181(5):1255–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Hirsch G, Kitas G, Klocke R. Intra-articular corticosteroid injection in osteoarthritis of the knee and hip: factors predicting pain relief—a systematic review. Semin Arthritis Rheum. 2013;42(5):451–73.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Godwin M, Dawes M. Intra-articular steroid injections for painful knees. Systematic review with meta-analysis. Can Fam Physician. 2004;50:241–8.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Yavuz U, Sokucu S, Albayrak A, et al. Efficacy comparisons of the intraarticular steroidal agents in the patients with knee osteoarthritis. Rheumatol Int. 2012;32(11):3391–6.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kruse DW. Intraarticular cortisone injection for osteoarthritis of the hip. Is it effective? Is it safe? Curr Rev Musculoskelet Med. 2008;1(3–4):227–33.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kullenberg B, Runesson R, Tuvhag R, et al. Intraarticular corticosteroid injection: pain relief in osteoarthritis of the hip? J Rheumatol. 2004;31(11):2265–8.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Chao J, Wu C, Sun B, et al. Inflammatory characteristics on ultrasound predict poorer long-term response to intraarticular corticosteroid injections in knee osteoarthritis. J Rheumatol. 2010;37(3):650–5.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Raynauld JP, Buckland-Wright C, Ward R, et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2003;48(2):370–7.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Habib G, Safia A. The effect of intra-articular injection of betamethasone acetate/betamethasone sodium phosphate on blood glucose levels in controlled diabetic patients with symptomatic osteoarthritis of the knee. Clin Rheumatol. 2009;28(1):85–7.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Syed HM, Green L, Bianski B, et al. Bupivacaine and triamcinolone may be toxic to human chondrocytes: a pilot study. Clin Orthop Relat Res. 2011;469(10):2941–7.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Dragoo JL, Danial CM, Braun HJ, et al. The chondrotoxicity of single-dose corticosteroids. Knee Surg Sports Traumatol Arthrosc. 2012;20(9):1809–14.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Venkatesan P, Fangman WL. Linear hypopigmentation and cutaneous atrophy following intra-articular steroid injections for de Quervain’s tendonitis. J Drugs Dermatol. 2009;8(5):492–3.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Tempfer H, Gehwolf R, Lehner C, et al. Effects of crystalline glucocorticoid triamcinolone acetonide on cultered human supraspinatus tendon cells. Acta Orthop. 2009;80(3):357–62.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Muto T, Kokubu T, Mifune Y, et al. Temporary inductions of matrix metalloprotease-3 (MMP-3) expression and cell apoptosis are associated with tendon degeneration or rupture after corticosteroid injection. J Orthop Res. 2014;32(10):1297–304.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Hossain MA, Park J, Choi SH, et al. Dexamethasone induces apoptosis in proliferative canine tendon cells and chondrocytes. Vet Comp Orthop Traumatol. 2008;21(4):337–42.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Hunter DJ. Viscosupplementation for osteoarthritis of the knee. N Engl J Med. 2015;372(26):2570.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Wobig M, Bach G, Beks P, et al. The role of elastoviscosity in the efficacy of viscosupplementation for osteoarthritis of the knee: a comparison of hylan G-F 20 and a lower-molecular-weight hyaluronan. Clin Ther. 1999;21(9):1549–62.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Kotevoglu N, Iyibozkurt PC, Hiz O, et al. A prospective randomised controlled clinical trial comparing the efficacy of different molecular weight hyaluronan solutions in the treatment of knee osteoarthritis. Rheumatol Int. 2006;26(4):325–30.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ghosh P, Guidolin D. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weight dependent? Semin Arthritis Rheum. 2002;32(1):10–37.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Modawal A, Ferrer M, Choi HK, et al. Hyaluronic acid injections relieve knee pain. J Fam Pract. 2005;54(9):758–67.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Medina JM, Thomas A, Denegar CR. Knee osteoarthritis: should your patient opt for hyaluronic acid injection? J Fam Pract. 2006;55(8):669–75.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Campbell J, Bellamy N, Gee T. Differences between systematic reviews/meta-analyses of hyaluronic acid/hyaluronan/hylan in osteoarthritis of the knee. Osteoarthr Cartil. 2007;15(12):1424–36.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Tang SF, Chen CP, Chen MJ, et al. Changes in sagittal ground reaction forces after intra-articular hyaluronate injections for knee osteoarthritis. Arch Phys Med Rehabil. 2004;85(6):951–5.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Zoboli AA, de Rezende MU, de Campos GC, et al. Prospective randomized clinical trial: single and weekly viscosupplementation. Acta Ortop Bras. 2013;21(5):271–5.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Altman RD, Schemitsch E, Bedi A. Assessment of clinical practice guideline methodology for the treatment of knee osteoarthritis with intra-articular hyaluronic acid. Semin Arthritis Rheum. 2015;45:132.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Strand V, McIntyre LF, Beach WR, et al. Safety and efficacy of US-approved viscosupplements for knee osteoarthritis: a systematic review and meta-analysis of randomized, saline-controlled trials. J Pain Res. 2015;8:217–28.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Goldberg VM, Coutts RD. Pseudoseptic reactions to hylan viscosupplementation: diagnosis and treatment. Clin Orthop Relat Res. 2004;419:130–7.CrossRefGoogle Scholar
  102. 102.
    Zhu Y, Yuan M, Meng HY, et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthr Cartil. 2013;21(11):1627–37.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Riboh JC, Saltzman BM, Yanke AB, et al. Effect of leukocyte concentration on the efficacy of platelet-rich plasma in the treatment of knee osteoarthritis. Am J Sports Med. 2016;44(3):792–800.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Sanchez M, Anitua E, Azofra J, et al. Intra-articular injection of an autologous preparation rich in growth factors for the treatment of knee OA: a retrospective cohort study. Clin Exp Rheumatol. 2008;26(5):910–3.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Spakova T, Rosocha J, Lacko M, et al. Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid. Am J Phys Med Rehabil. 2012;91(5):411–7.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Gobbi A, Lad D, Karnatzikos G. The effects of repeated intra-articular PRP injections on clinical outcomes of early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2170–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Filardo G, Kon E, Di Martino A, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord. 2012;13:229.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Filardo G, Di Matteo B, Di Martino A, et al. Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: a randomized controlled trial. Am J Sports Med. 2015;43(7):1575–82.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Chang KV, Hung CY, Aliwarga F, et al. Comparative effectiveness of platelet-rich plasma injections for treating knee joint cartilage degenerative pathology: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2014;95(3):562–75.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Campbell KA, Saltzman BM, Mascarenhas R, et al. Does intra-articular platelet-rich plasma injection provide clinically superior outcomes compared with other therapies in the treatment of knee osteoarthritis? A systematic review of overlapping meta-analyses. Arthroscopy. 2015;31(11):2213–21.PubMedCrossRefGoogle Scholar
  111. 111.
    Oh JH, Kim W, Park KU, et al. Comparison of the cellular composition and cytokine-release kinetics of various platelet-rich plasma preparations. Am J Sports Med. 2015;43(12):3062–70.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Sakata R, McNary SM, Miyatake K, et al. Stimulation of the superficial zone protein and lubrication in the articular cartilage by human platelet-rich plasma. Am J Sports Med. 2015;43(6):1467–73.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Mishra AK, Skrepnik NV, Edwards SG, et al. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med. 2014;42(2):463–71.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Ornetti P, Nourissat G, Berenbaum F, et al. Does platelet-rich plasma have a role in the treatment of osteoarthritis? Joint Bone Spine. 2016;83(1):31–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Lee WD, Hurtig MB, Pilliar RM, et al. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells. Osteoarthr Cartil. 2015;23(8):1307–15.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Qi Y, Feng G, Yan W. Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Mol Biol Rep. 2012;39(5):5683–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Matsumoto T, Cooper GM, Gharaibeh B, et al. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum. 2009;60(5):1390–405.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Gibbs N, Diamond R, Sekyere EO, et al. Management of knee osteoarthritis by combined stromal vascular fraction cell therapy, platelet-rich plasma, and musculoskeletal exercises: a case series. J Pain Res. 2015;8:799–806.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Vega A, Martin-Ferrero MA, Del Canto F, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Rodriguez-Merchan EC. Intra-articular injections of mesenchymal stem cells for knee osteoarthritis. Am J Orthop (Belle Mead NJ). 2014;43(12):E282–91.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mitchell S. Fourman
    • 1
  • Jay V. Kalawadia
    • 2
  • James Bradley
    • 1
    Email author
  1. 1.Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Department of Orthopaedic SurgeryOrthopaedic Associates of AllentownAllentownUSA

Personalised recommendations