Advertisement

Multiple Alignment of Spatiotemporal Deformable Objects for the Average-Organ Computation

  • Shun Inagaki
  • Hayato Itoh
  • Atsushi ImiyaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)

Abstract

We deal with multiple image warping, which computes deformation fields between an image and a collection of images, as an extension of variational image registration. Using multiple image warping, we develop a variational method for the computation of average images of biological organs in three-dimensional Euclidean space. The average shape of three-dimensional biological organs is an essential feature to discriminate abnormal organs from normal organs. There are two kinds of volumetric image sets in medical image analysis. The first one is a collection of static volumetric data of an organ and/or organs. The other is a collection of temporal volumetric data of an organ and/or organs. A collection of temporal volumetric beating hearts is an example of temporal volumetric data. For spatiotemporal volumetric data, we can compute (1) the temporal average, which is the average of a heart during a cycle, (2) the frame average, which is the average of hearts at a frame, and (3) the temporal average of frame averages.

Keywords

Spatial Average Beating Heart Volumetric Data Frame Average Medical Image Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hjelle, Ø., Dæhlen, M.: Triangulations and Applications. Mathematics and Visualization Series. Springer (2006)Google Scholar
  2. 2.
    Fischer, B., Modersitzki, J.: Ill-posed medicine- an introduction to image registration. Inverse Prob. 24, 1–17 (2008)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Modersitzki, J.: Numerical Methods for Image Registration, OUP (2004)Google Scholar
  4. 4.
    Rumpf, M., Wirth, B.: A nonlinear elastic shape averaging approach. SIAM J. Imaging Sci. 2, 800–833 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Arrate, F., Ratnanather, J.T., Younes, L.: Diffeomorphic active contours. SIAM J. Imaging Sci. 3, 176–198 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Sharon, E., Mumford, D.: 2D-shape analysis using conformal mapping. IJCV 70, 55–75 (2006)CrossRefGoogle Scholar
  7. 7.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE PAMI 25, 116–125 (2003)CrossRefGoogle Scholar
  8. 8.
    Baeza-Yates, R., Valiente, G.: An image similarity measure based on graph matching. In: Proc. 7th Int. Symp. String Processing and Information Retrieval, pp. 8–38 (2000)Google Scholar
  9. 9.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vision Comput. 27, 950–959 (2009)CrossRefGoogle Scholar
  10. 10.
    Tănase, M., Veltkamp, R.C., Haverkort, H.J.: Multiple polyline to polygon matching. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 60–70. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  11. 11.
    Stegmann, M.B., Gomez, D.D.: A brief introduction to statistical shape analysis, Informatics and Mathematical Modelling, Technical University of Denmark (2002). http://www2.imm.dtu.dk/pubdb/p.php?403
  12. 12.
    Srivastava, A., Joshi, S., Mio, W., Liu, X.: Statistical shape analysis: Clustering, learning, and testing. IEEE PAMI 27, 590–602 (2005)CrossRefGoogle Scholar
  13. 13.
    Rumpf, M., Wirth, B.: An elasticity-based covariance analysis of shapes. IJCV 92, 281–295 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Wirth, B., Bar, L., Rumpf, M., Sapiro, G.: A continuum mechanical approach to geodesics in shape space. IJCV 93, 293–318 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press (2007)Google Scholar
  16. 16.
    Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press (1996)Google Scholar
  17. 17.
    Demmel, J.W.: Applied Numerical Linear Algebra. SIAM (1997)Google Scholar
  18. 18.
    Varga, R.S.: Matrix Iterative Analysis, 2nd edn. Springer (2000)Google Scholar
  19. 19.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE PAMI 25, 116–125 (2003)CrossRefGoogle Scholar
  20. 20.
    Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Physics in Medicine and Biology 46, R1–45 (2001)CrossRefGoogle Scholar
  21. 21.
    Avants, B., Gee, J.C.: Geodesic estimation for large deformation anatomical shape averaging and interpolation. NeuroImage 23, S139–S150 (2004)CrossRefGoogle Scholar
  22. 22.
    Milios, E., Petrakis, E.G.M.: Shape retrieval based on dynamic programming. IEEE IP 9, 141–147 (2000)Google Scholar
  23. 23.
    Grigorescu, C., Petkov, N.: Distance sets for shape filters and shape recognition. IEEE IP 12, 1274–1286 (2003)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Graduate School of Advanced Integration ScienceChiba UniversityChibaJapan
  2. 2.Institute of Management and Information TechnologiesChiba UniversityChibaJapan

Personalised recommendations