High-Resolution Plant Shape Measurements from Multi-view Stereo Reconstruction

  • Maria KlodtEmail author
  • Daniel Cremers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)


Accurate high-resolution 3D models are essential for a non-invasive analysis of phenotypic characteristics of plants. Leaf surface areas, fruit volumes and leaf inclination angles are typically of interest. This work presents a globally optimal 3D geometry reconstruction method that is specialized to high-resolutions and is thus suitable to reconstruct thin structures typically occuring in the geometry of plants. Volumetric 3D models are computed in a convex optimization framework from a set of RGB input images depicting the plant from different view points. The method uses the memory and run-time efficient octree data structure for fast computations of high-resolution 3D models. Results show accurate 3D reconstructions of barley, while an increase in resolution of a factor of up to 2000 is achieved in comparison to the use of a uniform voxel based data structure, making the choice of data structure crucial for feasible resolutions.


Stereo Reconstruction Convex Optimization Plant Phenotyping Octrees 


  1. 1.
    Abbas, S.M., Muhammad, A.: Outdoor RGB-D slam performance in slow mine detection. In: 7th German Conference on Robotics, Proceedings of ROBOTIK 2012, pp. 1–6. VDE (2012)Google Scholar
  2. 2.
    Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: IEEE First International Conference on Computer Vision (ICCV), London, Great Britain, pp. 433–438 (June 1987)Google Scholar
  3. 3.
    Biskup, B., Scharr, H., Schurr, U., Rascher, U.: A stereo imaging system for measuring structural parameters of plant canopies. Plant Cell Environ. 30(10), 1299–1308 (2007)CrossRefGoogle Scholar
  4. 4.
    Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 136–152. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  5. 5.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cremers, D., Kolev, K.: Multiview stereo and silhouette consistency via convex functionals over convex domains. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(6), 1161–1174 (2011)CrossRefGoogle Scholar
  7. 7.
    Dhondt, S., Wuyts, N., Inzé, D.: Cell to whole-plant phenotyping: the best is yet to come. Trends in Plant Science 18(8), 433–444 (2013)CrossRefGoogle Scholar
  8. 8.
    Fiorani, F., Schurr, U.: Future scenarios for plant phenotyping. Annual Review of Plant Biology 64, 267–291 (2013)CrossRefGoogle Scholar
  9. 9.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  10. 10.
    Gorelick, L., Schmidt, F.R., Boykov, Y., Delong, A., Ward, A.: Segmentation with non-linear regional constraints via line-search cuts. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 583–597. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Graber, G., Pock, T., Bischof, H.: Online 3D reconstruction using convex optimization. In: 1st Workshop on Live Dense Reconstruction From Moving Cameras, ICCV 2011 (2011)Google Scholar
  12. 12.
    Granier, C., Aguirrezabal, L., Chenu, K., Cookson, S., Dauzat, M., Hamard, P., Thioux, J., Rolland, G., Bouchier-Combaud, S., Lebaudy, A.: Phenopsis, an automated platform for reproducible phenotyping of plant responses to soil water deficit in arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytologist 169, 623–635 (2006)CrossRefGoogle Scholar
  13. 13.
    Kazmi, W., Foix, S., Alenya, G., Andersen, H.J.: Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: Analysis and comparison. ISPRS Journal of Photogrammetry and Remote Sensing 88, 128–146 (2014)CrossRefGoogle Scholar
  14. 14.
    Kilian, B., Graner, A.: Ngs technologies for analyzing germplasm diversity in genebanks. Brief Funct Genomics 11(1), 38–50 (2012)CrossRefGoogle Scholar
  15. 15.
    Klodt, M., Cremers, D.: A convex framework for image segmentation with moment constraints. In: IEEE International Conference on Computer Vision (ICCV) (2011)Google Scholar
  16. 16.
    Kolev, K., Klodt, M., Brox, T., Cremers, D.: Continuous Global Optimization in Multiview 3D Reconstruction. International Journal of Computer Vision (IJCV) 84(1), 80–96 (2009)CrossRefGoogle Scholar
  17. 17.
    Korhonen, L., Heikkinen, J.: Automated Analysis of in Situ Canopy Images for the Estimation of Forest Canopy Cover. Forest Science 55(4), 323–334 (2009)Google Scholar
  18. 18.
    Ladikos, A., Benhimane, S., Navab, N.: Multi-view reconstruction using narrow-band graph-cuts and surface normal optimization. In: BMVC, pp. 1–10 (2008)Google Scholar
  19. 19.
    Lati, R.N., Filin, S., Eizenberg, H.: Robust methods for measurement of leaf-cover area and biomass from image data. Weed Science 59(2), 276–284 (2011)CrossRefGoogle Scholar
  20. 20.
    Laurentini, A.: The visual hull concept for silhouette-based imageunderstanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162(1994)Google Scholar
  21. 21.
    Louarn, G., Carré, S., Boudon, F., Eprinchard, A., Combes, D.: Characterization of whole plant leaf area properties using laser scanner point clouds. In: Fourth International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Shanghai, Chine (2012)Google Scholar
  22. 22.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  23. 23.
    Meagher, D.: Octree Encoding: a New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer. Electrical and Systems Engineering Department Rensseiaer Polytechnic Institute Image Processing Laboratory (1980)Google Scholar
  24. 24.
    Mendez-Vigo, B., de Andres, M., Ramiro, M., Martinez-Zapater, J., Alonso-Blanco, C.: Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in arabidopsis thaliana. Journal of Experimental Botany 61(6), 1611–1623 (2010)CrossRefGoogle Scholar
  25. 25.
    Munns, R., James, R.A., Sirault, X.R.R., Furbank, R.T., Jones, H.G.: New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany 61(13), 3499–3507 (2010)CrossRefGoogle Scholar
  26. 26.
    Paproki, A., Sirault, X., Berry, S., Furbank, R., Fripp, J.: A novel mesh processing based technique for 3D plant analysis. BMC Plant Biology 12(1), 63 (2012)CrossRefGoogle Scholar
  27. 27.
    Paulus, S., Schumann, H., Kuhlmann, H., Leon, J.: High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants. Biosystems Engineering 121, 1–11 (2014)CrossRefGoogle Scholar
  28. 28.
    Pisek, J., Sonnentag, O., Richardson, A.D., Mottus, M.: Is the spherical leaf inclination angle distribution a valid assumption for temperate and boreal broadleaf tree species? Agricultural and Forest Meteorology 169, 186–194 (2013)CrossRefGoogle Scholar
  29. 29.
    Schuchert, T., Scharr, H.: Estimation of 3D object structure, motion and rotation based on 4D affine optical flow using a multi-camera array. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 596–609. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  30. 30.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections in 3D. In: SIGGRAPH Conference Proceedings, pp. 835–846. ACM Press, New York (2006)Google Scholar
  31. 31.
    Steinbruecker, F., Kerl, C., Sturm, J., Cremers, D.: Large-scale multi-resolution surface reconstruction from rgb-d sequences. In: IEEE International Conference on Computer Vision (ICCV), Sydney, Australia (2013)Google Scholar
  32. 32.
    Toeppe, E., Nieuwenhuis, C., Cremers, D.: Volume constraints for single view reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA (2013)Google Scholar
  33. 33.
    Unger, M., Pock, T., Bischof, H.: Continuous globally optimal image segmentation with local constraints. In: Computer Vision Winter Workshop 2008, Moravske Toplice, Slovenija (February 2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Technische Universität MünchenMunichGermany

Personalised recommendations