Advertisement

Descending Stairs Detection with Low-Power Sensors

  • Severine CloixEmail author
  • Guido Bologna
  • Viviana Weiss
  • Thierry Pun
  • David Hasler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

With the increasing proportion of senior citizens, many mobility aid devices were developed such as the rollator. However among walker’s users, 87% of their falls is attributed to rollators. The EyeWalker project aims at developing a small device for rollators to protect elderly people from such dangers. Descending stairs are ones of the potential hazards rollator users have to daily face. We propose a method to detect them in real-time using a passive stereo camera. To meet the requirements of low-power consumption, we examined the performance of our stereo vision based detector with regard to the camera resolution. It succeeds in differentiating dangerously approaching stairs from safe situations at low resolutions. In the future, our detector will be ported on an embedded platform equipped with a pair of low-resolution and high dynamic range stereo camera for both indoor and outdoor usage with a battery-life of several days.

Keywords

Descending stair detection Stereo vision Elderly care Rehabilitation Visual impairment Low-power sensors 

References

  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)Google Scholar
  2. 2.
    Bouhamed, S.A., Kallel, I.K., Masmoudi, D.S.: New electronic white cane for stair case detection and recognition using ultrasonic sensor. International Journal of Advanced Computer Science & Applications 4(6) (2013)Google Scholar
  3. 3.
    BPA: “brochure technique escaliers” and “garde-corps base: norme sia 358”, bureau de prévention des accidents (2009). http://www.bfu.ch/sites/assets/Shop/bfu_2.007.02_Escaliers.pdf, http://www.inoxconcept.ch/images/normes_sia_358.pdf (Online, accessed June 20, 2014)
  4. 4.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library, 1st edn. O’Reilly Media (September 2008)Google Scholar
  5. 5.
    Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF: computing a local binary descriptor very fast. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(7), 1281–1298 (2012)CrossRefGoogle Scholar
  6. 6.
    Cloix, S., Weiss, V., Bologna, G., Pun, T., Hasler, D.: Obstacle and planar object detection using sparse 3D information for a smart walker. In: 9th International Conference on Computer Vision Theory and Applications, vol. 2, pp. 305–312, Lisbon, Portugal (January 2014)Google Scholar
  7. 7.
    Cong, Y., Li, X., Liu, J., Tang, Y.: A stairway detection algorithm based on vision for ugv stair climbing. In: IEEE International Conference on Networking, Sensing and Control, ICNSC 2008, pp. 1806–1811. IEEE (2008)Google Scholar
  8. 8.
    Delmerico, J.A., Baran, D., David, P., Ryde, J., Corso, J.J.: Ascending stairway modeling from dense depth imagery for traversability analysis. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 2283–2290. IEEE (2013)Google Scholar
  9. 9.
    Equiterre: “rampes, marches et escaliers” and “trottoirs” guidelines. http://www.mobilitepourtous.ch/pdf/fiche_7.pdf, http://www.mobilitepourtous.ch/pdf/fiche_1.pdf (Online, accessed June 20, 2014)
  10. 10.
    Furukawa, Y., Ponce, J.: Accurate camera calibration from multi-view stereo and bundle adjustment. International Journal of Computer Vision 84(3), 257–268 (2009)CrossRefGoogle Scholar
  11. 11.
    Gupta, M., Yin, Q., Nayar, S.K.: Structured light in sunlight. In: IEEE International Conference on Computer Vision (ICCV) (2013)Google Scholar
  12. 12.
    Hartley, R., Zisserman, A.: Multiple View Geometry in compter vision, 2nd edn. Cambridge University Press (2003)Google Scholar
  13. 13.
    Hesch, J.A., Mariottini, G.L., Roumeliotis, S.I.: Descending-stair detection, approach, and traversal with an autonomous tracked vehicle. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5525–5531. IEEE (2010)Google Scholar
  14. 14.
  15. 15.
    Konolige, K.: Small vision systems: hardware and implementation. In: Eighth International Symposium on Robotics Research, pp. 111–116, Hayama, Japan (1997)Google Scholar
  16. 16.
    Konolige, K.: Projected texture stereo. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 148–155. IEEE (2010)Google Scholar
  17. 17.
    Lacey, G., Rodriguez-Losada, D.: The evolution of guido. IEEE Robotics & Automation Magazine 15(4), 75–83 (2008)CrossRefGoogle Scholar
  18. 18.
    Lacey, G., Namara, S.M., Dawson-Howe, K.M.: Personal adaptive mobility aid for the infirm and elderly blind. In: Mittal, V.O., Yanco, H.A., Aronis, J., Simpson, R.C. (eds.) Assistive Technology and Artificial Intelligence. LNCS (LNAI), vol. 1458, pp. 211–220. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  19. 19.
    Lee, Y.H., Leung, T.S., Medioni, G.: Real-time staircase detection from a wearable stereo system. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3770–3773. IEEE (2012)Google Scholar
  20. 20.
    Nalpantidis, L., Sirakoulis, G., Gasteratos, A.: Review of stereo vision algorithms: From software to hardware. International Journal of Optomechatronics 2(4), 435–462 (2008)CrossRefGoogle Scholar
  21. 21.
    OECD: Society at a glance. OECD Social Indicators, 2006 Ed., organization for Economic Co-operation and Development, 2009 data are available on the Web (2006)Google Scholar
  22. 22.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1–3), 7–42 (2002)Google Scholar
  23. 23.
    Schmidt, E., Manser, J.A.: Directives “voies piétonnes adaptées aux handicapés” rues - chemins - places. http://www.mobilitepietonne.ch/fileadmin/redaktion/publikationen/Strassen_Wege_Plaetze__Richtlinien_fuer_behindertengerechte_Fusswegnetze_f.pdf (Online, accessed June 20, 2014)
  24. 24.
    Serro, M., Shahrabadi, S., Moreno, M., Jos, J.T., Rodrigues, J.I., Rodrigues, J.M.F., Buf, J.M.H.: Computer vision and GIS for the navigation of blind persons in buildings. Universal Access in the Information Society (February 2014)Google Scholar
  25. 25.
    Shahrabadi, S., Rodrigues, J.M.F., du Buf, J.M.H.: Detection of indoor and outdoor stairs. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 847–854. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  26. 26.
    Tseng, C.K., Li, I., Chien, Y.H., Chen, M.C., Wang, W.Y.: Autonomous stair detection and climbing systems for a tracked robot. In: 2013 International Conference on System Science and Engineering (ICSSE), pp. 201–204. IEEE (2013)Google Scholar
  27. 27.
    Walter, E., Cavegn, M., Scaramuzza, G., Niemann, S., Allenbach, R.: Fussverkehr unfallgeschehen, risikofaktoren und prävention (2007). http://mobilitepourtous.ch/pdf/Bpa_Pietons_accidentes_2007.pdf (Online, accessed June 20, 2014)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Severine Cloix
    • 1
    • 2
    Email author
  • Guido Bologna
    • 2
  • Viviana Weiss
    • 2
  • Thierry Pun
    • 2
  • David Hasler
    • 1
  1. 1.Centre Suisse d’Electronique et de MicrotechniqueNeuchâtelSwitzerland
  2. 2.Computer Science DepartmentUniversity of GenevaGenevaSwitzerland

Personalised recommendations