Advertisement

Vision Correcting Displays Based on Inverse Blurring and Aberration Compensation

  • Brian A. BarskyEmail author
  • Fu-Chung Huang
  • Douglas Lanman
  • Gordon Wetzstein
  • Ramesh Raskar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

The concept of a vision correcting display involves digitally modifying the content of a display using measurements of the optical aberrations of the viewer’s eye so that the display can be seen in sharp focus by the user without requiring the use of eyeglasses or contact lenses. Our first approach inversely blurs the image content on a single layer. After identifying fundamental limitations of this approach, we propose the multilayer concept. We then develop a fractional frequency separation method to enhance the image contrast and build a multilayer prototype comprising transparent LCDs. Finally, we combine our viewer-adaptive inverse blurring with off-the-shelf lenslets or parallax barriers and demonstrate that the resulting vision-correcting computational display system facilitates significantly higher contrast and resolution as compared to previous solutions. We also demonstrate the capability to correct higher order aberrations.

Keywords

Aberrations Visual correction Multilayer display Deconvolution Transparent LCDs Light field display 

References

  1. 1.
    Akeley, K., Watt, S.J., Girshick, A.R., Banks, M.S.: A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23(3), 804–813 (2004). http://doi.acm.org/10.1145/1015706.1015804 CrossRefGoogle Scholar
  2. 2.
    Alonso Jr, M., Barreto, A.B.: Pre-compensation for high-order aberrations of the human eye using on-screen image deconvolution. IEEE Engineering in Medicine and Biology Society. 1, 556–559 (2003)Google Scholar
  3. 3.
    Archand, P., Pite, E., Guillemet, H., Trocme, L.: Systems and methods for rendering a display to compensate for a viewer’s visual impairment. International Patent Application PCT/US2011/039993 (2011)Google Scholar
  4. 4.
    Grosse, M., Wetzstein, G., Grundhöfer, A., Bimber, O.: Coded aperture projection. ACM Trans. Graph. (2010). http://doi.acm.org/10.1145/1805964.1805966
  5. 5.
    Huang, F.C., Barsky, B.A.: A framework for aberration compensated displays. Tech. Rep. UCB/EECS-2011-162, EECS Department, University of California, Berkeley, December 2011. http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-162.html
  6. 6.
    Huang, F.C., Lanman, D., Barsky, B.A., Raskar, R.: Correcting for optical aberrations using multilayer displays. ACM Trans. Graph. 31(6), 185:1–185:12 (2012). http://doi.acm.org/10.1145/2366145.2366204 Google Scholar
  7. 7.
    Huang, F.C., Wetzstein, G., Barsky, B.A., Raskar, R.: Eyeglasses-free display: Towards correcting visual aberrations with computational light field displays. ACM Transaction on Graphics xx, 0 August 2014. http://graphics.berkeley.edu/papers/Huang-EFD-2014-08/
  8. 8.
    Kaufman, P., Alm, A.: Adler’s Physiology of the Eye (Tenth Edition). Mosby (2002)Google Scholar
  9. 9.
    Kee, E., Paris, S., Chen, S., Wang, J.: Modeling and removing spatially-varying optical blur. In: IEEE International Conference on Computational Photography (2011)Google Scholar
  10. 10.
    Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., Raskar, R.: Polarization fields: dynamic light field display using multi-layer LCDs. ACM Trans. Graph. 30(6) (2011). http://doi.acm.org/10.1145/2070781.2024220
  11. 11.
    Pamplona, V.F., Oliveira, M.M., Aliaga, D.G., Raskar, R.: Tailored displays to compensate for visual aberrations. ACM Trans. Graph. 31(4), 81:1–81:12 (2012). http://doi.acm.org/10.1145/2185520.2185577 CrossRefGoogle Scholar
  12. 12.
    Wetzstein, G., Lanman, D., Heidrich, W., Raskar, R.: Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. (SIGGRAPH) 30(4), 95:1–95:12 (2011)CrossRefGoogle Scholar
  13. 13.
    Wetzstein, G., Lanman, D., Hirsch, M., Raskar, R.: Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (SIGGRAPH) 31(4), 80:1–80:11 (2012)CrossRefGoogle Scholar
  14. 14.
    Yellott, J.I., Yellott, J.W.: Correcting spurious resolution in defocused images. Proc. SPIE 6492 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Brian A. Barsky
    • 1
    • 2
    Email author
  • Fu-Chung Huang
    • 1
    • 4
  • Douglas Lanman
    • 3
    • 5
  • Gordon Wetzstein
    • 3
  • Ramesh Raskar
    • 3
  1. 1.Computer Science DivisionUC BerkeleyBerkeleyUSA
  2. 2.School of OptometryUC BerkeleyBerkeleyUSA
  3. 3.MIT Media LabProvidenceUSA
  4. 4.MicrosoftBerkeleyUSA
  5. 5.Oculus VRIrvineUSA

Personalised recommendations