A New Application of Smart Walker for Quantitative Analysis of Human Walking

  • Ting  WangEmail author
  • Claire Dune
  • Jean-Pierre Merlet
  • Philippe Gorce
  • Guillaume  Sacco
  • Philippe Robert
  • Jean-Michel Turpin
  • Bernard Teboul
  • Audrey Marteu
  • Olivier Guerin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)


This paper presents a new nonintrusive device for everyday gait analysis and health monitoring. The system is a standard rollator equipped with encoders and inertial sensors. The assisted walking of \(25\) healthy elderly and \(23\) young adults are compared to develop walking quality index. The subjects were asked to walk on a straight trajectory and an L-shaped trajectory respectively. The walking trajectory, which is missing in other gait analysis methods, is calculated based on the encoder data. The obtained trajectory and steps are compared with the results of a motion capture system. The gait analysis results show that new index obtained by using the walker measurements, and not available otherwise, are very discriminating, e.g., the elderly have larger lateral motion and maneuver area, smaller angular velocity during turning, their walking accuracy is lower and turning ability is weaker although they have almost the same walking velocity as the young people.


Smart walker Gait analysis Step detection Turning Elderly 


  1. 1.
    Alwan, M., et al.: Stability margin monitoring in steering-controlled intelligent walkers for the elderly. In: AAAI Fall Symposium, Arlington, November 4-6, pp. 1509–1514 (2005)Google Scholar
  2. 2.
    Bostelman, R., Albus, J.: Robotic patient transfer and rehabilitation device for patient care facilities or the home. Advanced Robotics 22(12), 1287–1307 (2008)CrossRefGoogle Scholar
  3. 3.
    Glover, J., et al.: A robotically-augmented walker for older adults. Technical Report CMU-CS-03-170, CMU, Pittsburgh, August 1 (2003)Google Scholar
  4. 4.
    Frizera, A., Ceres, R., Pons, J., Abellanas, A., Raya, R.: The smart walkers as geriatric assistive device. The simbiosis purpose. Gerontechnology 7(2), 108–113 (2008)CrossRefGoogle Scholar
  5. 5.
    Spenko, M., Yu, H., Dubowsky, S.: Robotic personal aids for mobility and monitoring for the elderly. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(3), 344–351 (2006)CrossRefGoogle Scholar
  6. 6.
    Chugo, D., et al.: A moving control of a robotic walker for standing, walking and seating assistance. In: Int. Conf. on Robotics and Biomimetics, Bangkok, February 21-26, pp. 692–697 (2008)Google Scholar
  7. 7.
    Médéric, P., Pasqui, V., Plumet, F., Bidaud, P., Guinot, J.C.: Elderly people sit to stand transfer experimental analysis. In: 8th Int. Conf. on Climbing and Walking Robots (CLAWAR), London (2005)Google Scholar
  8. 8.
    Grasse, R., Morère, Y., Pruski, A.: Assisted navigation for persons with reduced mobility: path recognition through particle filtering (condensation algorithm). J. of Intelligent and Robotic Systems 60(1), 19–57 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kulyukin, V., et al.: iWalker: toward a rollator mounted wayfinding system for the elderly. In: IEEE Int. Conf. on RFID, Las Vegas, April 16–17, pp. 303–311 (2008)Google Scholar
  10. 10.
    Hirata, Y., Komatsuda, S., Kosuge, K.: Fall prevention of passive intelligent walker based on human model. In: IEEE Int. Conf. on Intelligent Robots and Systems (IROS), Nice, September 22–26, pp. 1222–1228 (2008)Google Scholar
  11. 11.
    Merlet, J.P.: ANG, a family of multi-mode, low cost walking aid. In: IEEE Int. Conf. on Intelligent Robots and Systems (IROS), Workshop Assistance and Service Robotics in a Human Environment, Vilamoura (October 2012)Google Scholar
  12. 12.
    Hollman, J., Kovash, F., Kubik, J.J., Linbo, R.: Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait & Posture 26(1), 113–119 (2007)CrossRefGoogle Scholar
  13. 13.
    Menz, H., Lord, S., Fitzpatrick, R.: Age-related differences in walking stability. Age Ageing 32(2), 137–142 (2003)CrossRefGoogle Scholar
  14. 14.
    Woledge, R., Birtles, D., Newham, D.: The variable component of lateral body sway during walking in young and older humans. The Journals of Gerontology: Series A 60(11), 1463–1468 (2005)CrossRefGoogle Scholar
  15. 15.
    Owings, T., Grabiner, M.: Variability of step kinematics in young and older adults. Gait & Posture 20(1), 26–35 (2004)CrossRefGoogle Scholar
  16. 16.
    Grabiner, P., Biswas, S., Grabiner, M.: Age-related changes in spatial and temporal gait variables. Archives of Physical Medicine and Rehabilitation 82(1), 31–36 (2001)CrossRefGoogle Scholar
  17. 17.
    Hausdorff, J.M., Edelberg, H., Mitchell, S., Goldberger, A., Wei, J.: Increased gait unsteadiness in community-dwelling elderly fallers. Archives of Physical Medicine and Rehabilitation 78(3), 278–283 (1997)CrossRefGoogle Scholar
  18. 18.
    Barbara, R., Freitas, S., Bagesteiro, L., Perracini, M., Alouche, S.: Gait characteristics of younger-old and older-old adults walking overground and on a compliant surface. Brazilian Journal of Physical Therapy 16(5), 375–380 (2012)CrossRefGoogle Scholar
  19. 19.
    Ko, S.U., Hausdorff, J., Ferrucci, L.: Age-associated differences in the gait pattern changes of older adults during fast-speed and fatigue conditions: results from the baltimore longitudinal study of ageing. Age & Ageing 39(6), 688–694 (2010)CrossRefGoogle Scholar
  20. 20.
    Callisaya, M., Blizzard, L., Schmidt, M., McGinley, J., Srikanth, V.K.: Sex modifies the relationship between age and gait: a population-based study of older adults. The Journals of Gerontology: Series A 63(2), 165–170 (2008)CrossRefGoogle Scholar
  21. 21.
    Zijlstra, W., Hof, A.: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait & Posture 18(2), 1–10 (2003)CrossRefGoogle Scholar
  22. 22.
    Studenski, S., Perera, S., Patel, K., et al.: Gait speed and survival in older adults. The Journal of American Medical Association Network 305(1), 50–58 (2011)CrossRefGoogle Scholar
  23. 23.
    Callisaya, M., Blizzard, L., Schmidt, M., McGinley, J., Srikanth, V.K.: Ageing and gait variability-a population-based study of older people. Age Ageing 39(2), 191–197 (2010)CrossRefGoogle Scholar
  24. 24.
    Hausdorff, J., Rios, D., Edelberg, H.: Gait variability and fall risk in community-living older adults: a 1-year prospective study. Archives of Physical Medicine and Rehabilitation 82(8), 1050–1056 (2001)CrossRefGoogle Scholar
  25. 25.
    Higashi, Y., Yamakoshi, K., Fujimoto, T., Sekine, M., Tamura, T.: Quantitative evaluation of movement using the timed up-and-go test. IEEE Engineering in Medicine and Biology Magazine 27(4), 38–46 (2008)CrossRefGoogle Scholar
  26. 26.
    Zakaria, N.A., Kuwae, Y., Tamura, T., Minato, K., Kanaya, S.: Quantitative analysis of fall risk using tug test. Compute Methods in Biomechanics and Biomechnical Engineering, 1–13 (2013)Google Scholar
  27. 27.
    Salarian, A., Zampieri, C., Horak, F.B., Carlson-Kuhta, P., Nutt, J.G., Aminian, K.: Analyzing 180 degrees turns using an inertial system reveals early signs of progression of parkinson’s disease. In: 31st Annual International Conference of the IEEE Eng. Med. Biol. Soc., pp. 224–227 (2009)Google Scholar
  28. 28.
    Richards, J.G.: The measurement of human motion: A comparison of commercially available systems. Human Movement Science 18(5), 589–602 (1999)CrossRefGoogle Scholar
  29. 29.
    Lee, K., Jung, C.B., Chung, W.J.: Accurate calibration of kinematic parameters for two wheel differential mobile robots. Journal of Mechanical Science and Technology 26(5), 1603–1611 (2011)CrossRefGoogle Scholar
  30. 30.
    Zijlstra, W.: Assessment of spatio-temporal parameters during unconstrained walking. European Journal of Applied Physiology 92(1–2), 39–44 (2004)CrossRefGoogle Scholar
  31. 31.
    Huang, Y., Zheng, H., Nugent, C., et al.: An orientation free adaptive step detection algorithm using a smart phone in physical activity monitoring. Health and Technology (2), 249–258 (2012)Google Scholar
  32. 32.
    Rebula, J., Ojeda, L., Adamczyk, P., Kuo, A.: Measurement of foot placement and its variability with inertial sensors. Gait & Posture 38(4), 974–980 (2013)CrossRefGoogle Scholar
  33. 33.
    Wu, G., Cavanagh, P.R.: ISB recommendations for standardization in the reporting of kinematic data. Journal of Biomechanics 28(10), 1257–1261 (1995)CrossRefGoogle Scholar
  34. 34.
    Salbach, N., Mayo, N., Higgins, J., Ahmed, S., Finch, L., Richards, C.: Responsiveness and predictability of gait speed and other disability measures in acute stroke. Archives of Physical Medicine and Rehabilitation 82(9), 1204–1212 (2001)CrossRefGoogle Scholar
  35. 35.
    Podsiadlo, D., Richardson, S.: The timed ‘up & go’: a test of basic functional mobility for frail elderly persons. Journal of American Geriatrics Society 39(2), 142–148 (1991)Google Scholar
  36. 36.
    Tinetti, M.: Performance-oriented assessment of mobility problems in elderly patients. Journal of American Geriatrics Society 34(2), 119–126 (1986)Google Scholar
  37. 37.
    Panella, L., Lombardi, R., Buizza, A., Gandolfi, R., Pizzagalli, P.: Towards objective quantification of the tinetti test. Functional Neurology 17(1), 25–30 (2002)Google Scholar
  38. 38.
    Hahn, M., Chou, L.: Can motion of individual body segments identify dynamic instability in the elderly. Clinical Biomechanics 18(8), 737–744 (2003)CrossRefGoogle Scholar
  39. 39.
    Joseph, H.F.: Gait in the elderly. Medicine and Health Rhode Island, 134–135 (2008)Google Scholar
  40. 40.
    Tinetti, M.E., Speechley, M., Ginter, S.F.: Risk factors for falls among elderly persons living in the community. The New England Journal of Medicine 319(26), 1101–1107 (1988)CrossRefGoogle Scholar
  41. 41.
    Tinetti, M.E., Williams, T.F., Mayewski, R.: Fall risk index for elderly patients based on number of chronic disabilities. The American Journal of Medicine 80(3), 429–434 (1986)CrossRefGoogle Scholar
  42. 42.
    Beauchet, O., Annweiler, C., Assal, F., Bridenbaugh, S., Herrmann, F.R., Kressig, R.W., Allali, G.: Imagined timed up & go test: a new tool to assess higher-level gait and balance disorders in older adults? Journal of the Neurological Sciences 294(1–2), 102–106 (2010)CrossRefGoogle Scholar
  43. 43.
    Shkuratova, N., Morris, M.E., Huxham, F.: Effects of age on balance control during walking. Archives of Physical Medicine and Rehabilitation 85(4), 582–588 (2004)CrossRefGoogle Scholar
  44. 44.
    Weiss, A., Herman, T., Plotnik, M., Brozgol, M., Maidan, I., Giladi, N., Gurevich, T., Hausdorff, J.M.: Can an accelerometer enhance the utility of the timed up & go test when evaluating patients with parkinson’s disease? Medical Engineering & Physics 32(2), 119–125 (2010)CrossRefGoogle Scholar
  45. 45.
    Greene, B.R., O’Donovan, A., Romero-Ortuno, R., Cogan, L., Scanaill, C.N., Kenny, R.A.: Quantitative falls risk assessment using the timed up and go test. IEEE Transactions on Bio-medical Engineering 57(12), 2918–2926 (2010)CrossRefGoogle Scholar
  46. 46.
    Al-Jawad, A., Adame, M.R., Romanovas, M., Hobert, M., Maetzler, W., Traechtler, M., Moeller, K., Manoli, Y.: Using multi-dimensional dynamic time warping for tug test instrumentation with inertial sensors. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 212–218 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ting  Wang
    • 1
    Email author
  • Claire Dune
    • 1
    • 2
  • Jean-Pierre Merlet
    • 1
  • Philippe Gorce
    • 2
  • Guillaume  Sacco
    • 3
  • Philippe Robert
    • 3
  • Jean-Michel Turpin
    • 3
  • Bernard Teboul
    • 3
  • Audrey Marteu
    • 3
  • Olivier Guerin
    • 3
  1. 1.HephaistosINRIA Sophia AntipolisValbonneFrance
  2. 2.HandiBio EA 4322Université de ToulonLa GardeFrance
  3. 3.CHU de NiceNiceFrance

Personalised recommendations