Detection and Modelling of Staircases Using a Wearable Depth Sensor

  • Alejandro  Pérez-YusEmail author
  • Gonzalo López-Nicolás
  • José J. Guerrero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)


In this paper we deal with the perception task of a wearable navigation assistant. Specifically, we have focused on the detection of staircases because of the important role they play in indoor navigation due to the multi-floor reaching possibilities they bring and the lack of security they cause, specially for those who suffer from visual deficiencies. We use the depth sensing capacities of the modern RGB-D cameras to segment and classify the different elements that integrate the scene and then carry out the stair detection and modelling algorithm to retrieve all the information that might interest the user, i.e. the location and orientation of the staircase, the number of steps and the step dimensions. Experiments prove that the system is able to perform in real-time and works even under partial occlusions of the stairway.


Stair detection Obstacle detection Segmentation Visually impaired RGB-D 


  1. 1.
    Aladren, A., Lopez-Nicolas, G., Puig, L., Guerrero, J.: Navigation assistance for the visually impaired using RGB-D sensor with range expansion. IEEE Systems Journal, Special Issue on Robotics & Automation for Human Health PP(99), 1–11 (2014)Google Scholar
  2. 2.
    Albert, A., Suppa, M., Gerth, W.: Detection of stair dimensions for the path planning of a bipedal robot. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM), vol. 2, pp. 1291–1296 (2001)Google Scholar
  3. 3.
    Cong, Y., Li, X., Liu, J., Tang, Y.: A stairway detection algorithm based on vision for UGV stair climbing. In: IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 1806–1811 (2008)Google Scholar
  4. 4.
    Delmerico, J.A., Baran, D., David, P., Ryde, J., Corso, J.J.: Ascending stairway modeling from dense depth imagery for traversability analysis. In: International Conference on Robotics and Automation (ICRA), pp. 2283–2290 (2013)Google Scholar
  5. 5.
    Filipe, V., Fernandes, F., Fernandes, H., Sousa, A., Paredes, H., Barroso, J.: Blind navigation support system based on Microsoft Kinect. Procedia Computer Science 14, 94–101 (2012)CrossRefGoogle Scholar
  6. 6.
    Hernández, D.C., Jo, K.H.: Stairway tracking based on automatic target selection using directional filters. In: Frontiers of Computer Vision (FCV), pp. 1–6 (2011)Google Scholar
  7. 7.
    Hesch, J.A., Mariottini, G.L., Roumeliotis, S.I.: Descending-stair detection, approach, and traversal with an autonomous tracked vehicle. In: Intelligent Robots and Systems (IROS), pp. 5525–5531. IEEE (2010)Google Scholar
  8. 8.
    Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P.J., Bunke, H., Goldgof, D.B., Bowyer, K., Eggert, D.W., Fitzgibbon, A., Fisher, R.B.: An experimental comparison of range image segmentation algorithms. Pattern Analysis and Machine Intelligence 18(7), 673–689 (1996)CrossRefGoogle Scholar
  9. 9.
    Lu, X., Manduchi, R.: Detection and localization of curbs and stairways using stereo vision. In: International Conference on Robotics and Automation (ICRA), vol. 4, p. 4648 (2005)Google Scholar
  10. 10.
    Mayol-Cuevas, W.W., Tordoff, B.J., Murray, D.W.: On the choice and placement of wearable vision sensors. Systems, Man and Cybernetics, Part A: Systems and Humans 39(2), 414–425 (2009)CrossRefGoogle Scholar
  11. 11.
    Mihankhah, E., Kalantari, A., Aboosaeedan, E., Taghirad, H.D., Ali, S., Moosavian, A.: Autonomous staircase detection and stair climbing for a tracked mobile robot using fuzzy controller. In: International Conference on Robotics and Biomimetics (ROBIO), pp. 1980–1985 (2009)Google Scholar
  12. 12.
    Ministerio de Fomento. Gobierno de España: Código Técnico de la Edificación, Documento Básico de Seguridad de Utilización y Accesibilidad (DB-SUA, Section 4.2) (2014)Google Scholar
  13. 13.
    Oßwald, S., Hornung, A., Bennewitz, M.: Improved proposals for highly accurate localization using range and vision data. In: International Conference on Intelligent Robots and Systems (IROS), pp. 1809–1814 (2012)Google Scholar
  14. 14.
    Pradeep, V., Medioni, G., Weiland, J., et al.: Piecewise planar modeling for step detection using stereo vision. In: Workshop on Computer Vision Applications for the Visually Impaired (2008)Google Scholar
  15. 15.
    Se, S., Brady, M.: Vision-based detection of staircases. In: Asian Conference on Computer Vision (ACCV), vol. 1, pp. 535–540 (2000)Google Scholar
  16. 16.
    Tang, T.J.J., Lui, W.L.D., Li, W.H.: Plane-based detection of staircases using inverse depth. In: Australasian Conference on Robotics and Automation (ACRA) (2012)Google Scholar
  17. 17.
    Vlaminck, M., Jovanov, L., Van Hese, P., Goossens, B., Philips, W., Pizurica, A.: Obstacle detection for pedestrians with a visual impairment based on 3D imaging. In: International Conference on 3D Imaging (IC3D) (2013)Google Scholar
  18. 18.
    Wang, S., Tian, Y.: Detecting stairs and pedestrian crosswalks for the blind by RGBD camera. In: International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), pp. 732–739 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alejandro  Pérez-Yus
    • 1
    Email author
  • Gonzalo López-Nicolás
    • 1
  • José J. Guerrero
    • 1
  1. 1.Instituto de Investigación en Ingeniería de AragónUniversidad de ZaragozaZaragozaSpain

Personalised recommendations