Advertisement

Color Barcode Decoding in the Presence of Specular Reflection

  • Homayoun BagheriniaEmail author
  • Roberto Manduchi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

Color barcodes enable higher information density with respect to traditional black and white barcodes. Existing technologies use small color palettes and display the colors in the palette in the barcode itself for easy and robust decoding. This solution comes at the cost of reduced information density due to the fact that the displayed reference colors cannot be used to encode information. We introduce a new approach to color barcode decoding that uses a relatively large palettes (up to 24 colors) and a small number of reference colors (2 to 6) to be displayed in a barcode. Our decoding method specifically accounts for specular reflections using a dichromatic model. The experimental results show that our decoding algorithm achieves higher information rate with a very low probability of decoding error compared to previous approaches that use a color palette for decoding.

Keywords

Color barcode decoding Dichromatic reflection model Subspace classification 

References

  1. 1.
    Parikh, D., Jancke, G.: Localization and segmentation of a 2D high capacity color barcode. In: IEEE Workshop on Applications of Computer Vision, WACV 2008, pp. 1–6. IEEE (2008)Google Scholar
  2. 2.
    Bagherinia, H., Manduchi, R.: High information rate and efficient color barcode decoding. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part II. LNCS, vol. 7584, pp. 482–491. Springer, Heidelberg (2012) Google Scholar
  3. 3.
    Shafer, S.A.: Using color to separate reflection components. Color Research & Application 10(4), 210–218 (1985)CrossRefGoogle Scholar
  4. 4.
    Han, T., Cheong, C., Lee, N., Shin, E.: Machine readable code image and method of encoding and decoding the same. U.S. Patent 7020327 (2000)Google Scholar
  5. 5.
    Bulan, O., Monga, V., Sharma, G.: High capacity color barcodes using dot orientation and color separability. In: Proc. SPIE-IS&T Electronic Imaging, vol. 7254 (2009)Google Scholar
  6. 6.
    Grillo, A., Lentini, A., Querini, M., Italiano, G.F.: High capacity colored two dimensional codes. In: Proc. Int. Multiconf. on Comp. Science Inf. Tech. (2010)Google Scholar
  7. 7.
    Kato, H., Tan, K.T., Chai, D.: Novel colour selection scheme for 2D barcode. In: Proc. International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2009)(2009)Google Scholar
  8. 8.
    Pei, S. Li, G., Wu, B.: Codec system design for continuous color barcode symbols. In: Proceedings of the 2008 IEEE 8th International Conference on Computer and Information Technology Workshops, Washington, DC, USA, pp. 539–544. IEEE Computer Society (2008)Google Scholar
  9. 9.
    Blasinski, H., Bulan, O., Sharma, G.: Per-colorant-channel color barcodes for mobile applications: An interference cancellation framework. IEEE Transactions on Image Processing 22(4), 1498–1511 (2013)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Sali, E., Lax, D.: Color bar code system. U.S. Patent 7210631 (2006)Google Scholar
  11. 11.
    Wang, F., Manduchi, R.: Color-constant information embedding. In: Proc. IEEE Workshop on Color and Reflectance in Imaging and Computer Vision (2010)Google Scholar
  12. 12.
    Bagherinia, H., Manduchi, R.: A theory of color barcodes. In: IEEE Color and Photometry in Computer Vision Workshop (CPCV), pp. 806–813. IEEE (2011)Google Scholar
  13. 13.
    Judd, D.B., MacAdam, D.L., Wyszecki, G., Budde, H.W., Condit, H.R., Henderson, S.T., Simonds, J.L.: Spectral distribution of typical daylight as a function of correlated color temperature. JOSA 54(8), 1031–1040 (1964)CrossRefGoogle Scholar
  14. 14.
    Slater, D., Healey, G.: What is the spectral dimensionality of illumination functions in outdoor scenes? In: Proc. CVPR. IEEE (1998)Google Scholar
  15. 15.
    Bagherinia, H., Manduchi, R.: Robust real-time detection of multi-color markers on a cell phone. Journal of Real-time Image Processing 8(2), 207–223 (2013)CrossRefGoogle Scholar
  16. 16.
    Kato, H., Billinghurst, M., Blanding, B., May, R.: Artoolkit. Hiroshima City University, Tech. Rep. (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of CaliforniaSanta CruzUSA

Personalised recommendations