Advertisement

Saliency Weighted Features for Person Re-identification

  • Niki MartinelEmail author
  • Christian Micheloni
  • Gian Luca Foresti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

In this work we propose a novel person re-identification approach. The solution, inspired by human gazing capabilities, wants to identify the salient regions of a given person. Such regions are used as a weighting tool in the image feature extraction process. Then, such novel representation is combined with a set of other visual features in a pairwise-based multiple metric learning framework. Finally, the learned metrics are fused to get the distance between image pairs and to re-identify a person. The proposed method is evaluated on three different benchmark datasets and compared with best state-of-the-art approaches to show its overall superior performance.

Keywords

Local Binary Pattern Salient Region Saliency Detection Local Binary Pattern Feature Camera Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    An, L., Kafai, M., Yang, S., Bhanu, B.: Reference-Based Person Re-Identification. In: Advanced Video and Signal-Based Surveillance (2013)Google Scholar
  2. 2.
    Avraham, T., Gurvich, I., Lindenbaum, M., Markovitch, S.: Learning implicit transfer for person re-identification. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 381–390. Springer, Heidelberg (2012) Google Scholar
  3. 3.
    Avraham, T., Lindenbaum, M.: Esaliency (extended saliency): meaningful attention using stochastic image modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(4), 693–708 (2010)CrossRefGoogle Scholar
  4. 4.
    Bak, S., Corvée, E., Brémond, F., Thonnat, M.: Boosted human re-identification using Riemannian manifolds. Image and Vision Computing 30(6–7), 443–452 (2012)CrossRefGoogle Scholar
  5. 5.
    Baltieri, D., Vezzani, R., Cucchiara, R.: 3DPeS: 3D People dataset for surveillance and forensics. In: International ACM Workshop on Multimedia Access to 3D Human Objects, pp. 59–64 (2011)Google Scholar
  6. 6.
    Bazzani, L., Cristani, M., Murino, V.: Symmetry-driven accumulation of local features for human characterization and re-identification. Computer Vision and Image Understanding 117(2), 130–144 (2013)Google Scholar
  7. 7.
    Bedagkar-Gala, A., Shah, S.K.: A Survey of Approaches and Trends in Person Re-identification. Image and Vision Computing (February 2014)Google Scholar
  8. 8.
    Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: Procedings of the British Machine Vision Conference, pp. 68.1–68.11. British Machine Vision Association (2011)Google Scholar
  9. 9.
    Chu, C.T., Hwang, J.N., Lan, K.M., Wang, S.Z.: Tracking across multiple cameras with overlapping views based on brightness and tangent transfer functions. In: International Conference on Distributed Smart Cameras, vol. (1), pp. 1–6. IEEE (August 2011)Google Scholar
  10. 10.
    Datta, A., Brown, L.M., Feris, R., Pankanti, S.: Appearance modeling for person re-identification using weighted brightness transfer functions. In: International Conference on Pattern Recognition, ICPR (2012)Google Scholar
  11. 11.
    Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian recognition with a learned metric. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 501–512. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Garcia, J., Martinel, N., Foresti, G.L., Gardel, A., Micheloni, C.: Person orientation and feature distances boost re-identification. In: International Conference on Pattern Recognition (2014)Google Scholar
  13. 13.
    Garg, R., Seitz, S.M., Ramanan, D., Snavely, N.: Where’s Waldo: Matching people in images of crowds. In: International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1793–1800. IEEE (June 2011)Google Scholar
  14. 14.
    Gheissari, N., Sebastian, T., Hartley, R.: Person reidentification using spatiotemporal appearance. In: International Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1528–1535. IEEE (2006)Google Scholar
  15. 15.
    Gilbert, A., Bowden, R.: Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 125–136. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. 16.
    Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(10), 1915–1926 (2012)CrossRefGoogle Scholar
  17. 17.
    Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recongnition, reacquisition and tracking. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS), Rio De Janeiro, Brazil (October 2007)Google Scholar
  18. 18.
    Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(2), 316–322 (2006)CrossRefGoogle Scholar
  19. 19.
    Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, Vancouver, pp. 554–552 (2007)Google Scholar
  20. 20.
    Hirzer, M., Roth, P.M., Bischof, H.: Person re-identification by efficient impostor-based metric learning. In: Advanced Video and Signal-Based Surveillance, pp. 203–208 (2012)Google Scholar
  21. 21.
    Hirzer, M., Roth, P.M., Köstinger, M., Bischof, H.: Relaxed pairwise learned metric for person re-identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 780–793. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Hou, X., Harel, J., Koch, C.: Image Signature: Highlighting Sparse Salient Regions. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(1), 194–201 (2011)Google Scholar
  23. 23.
    Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews. Neuroscience 2(3), 194–203 (2001)CrossRefGoogle Scholar
  24. 24.
    Javed, O., Shafique, K., Rasheed, Z., Shah, M.: Modeling inter-camera spacetime and appearance relationships for tracking across non-overlapping views. Computer Vision and Image Understanding 109(2), 146–162 (2008)CrossRefGoogle Scholar
  25. 25.
    Kostinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: International Conference on Computer Vision and Pattern Recognition, pp. 2288–2295 (2012)Google Scholar
  26. 26.
    Kviatkovsky, I., Adam, A., Rivlin, E.: Color Invariants for Person Re-Identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(7), 1622–1634 (2013)CrossRefGoogle Scholar
  27. 27.
    Li, J., Levine, M.D., An, X., Xu, X., He, H.: Visual saliency based on scale-space analysis in the frequency domain. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(4), 996–1010 (2013)CrossRefGoogle Scholar
  28. 28.
    Li, W., Wang, X.: Locally aligned feature transforms across views. In: International Conference on Computer Vision and Pattern Recognition, pp. 3594–3601. IEEE (June 2013)Google Scholar
  29. 29.
    Li, W., Zhao, R., Wang, X.: Human reidentification with transferred metric learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 31–44. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  30. 30.
    Liu, C., Gong, S., Loy, C.C.: On-the-fly Feature Importance Mining for Person Re-Identification. Pattern Recognition (November 2013)Google Scholar
  31. 31.
    Liu, C., Gong, S., Loy, C.C., Lin, X.: Person re-identification: what features are important? In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 391–401. Springer, Heidelberg (2012) Google Scholar
  32. 32.
    Liu, C., Loy, C.C., Gong, S., Wang, G.: POP: person re-identification post-rank optimisation. In: International Conference on Computer Vision (2013)Google Scholar
  33. 33.
    Lombardi, S., K, N., Makihara, Y., Yagi, Y.: Two-point gait: decoupling gait from body shape. In: International Conference on Computer Vision, pp. 1041–1048 (2013)Google Scholar
  34. 34.
    Ma, B., Su, Y., Jurie, F.: BiCov: a novel image representation for person re-identification and face verification. In: British Machine Vision Conference, pp. 57.1–57.11 (2012)Google Scholar
  35. 35.
    Ma, B., Su, Y., Jurie, F.: Local descriptors encoded by fisher vectors for person re-identification. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 413–422. Springer, Heidelberg (2012) Google Scholar
  36. 36.
    Martinel, N., Micheloni, C.: Person re-identification by modelling principal component analysis coefficients of image dissimilarities. Electronics Letters 50(14), 1000–1001 (2014)CrossRefGoogle Scholar
  37. 37.
    Martinel, N., Foresti, G.L.: Multi-signature based person re-identification. Electronics Letters 48(13), 765 (2012)CrossRefGoogle Scholar
  38. 38.
    Martinel, N., Micheloni, C.: Re-identify people in wide area camera network. In: International Conference on Computer Vision and Pattern Recognition Workshops, pp. 31–36. IEEE, Providence (2012)Google Scholar
  39. 39.
    Martinel, N., Micheloni, C., Piciarelli, C.: Learning pairwise feature dissimilarities for person re-identification. In: International Conference on Distributed Smart Cameras, pp. 1–6. IEEE, Palm Springs (2013)Google Scholar
  40. 40.
    Martinel, N., Micheloni, C., Piciarelli, C., Foresti, G.L.: Camera Selection for Adaptive Human-Computer Interface. IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(5), 653–664 (2014)CrossRefGoogle Scholar
  41. 41.
    Micheloni, C., Remagnino, P., Eng, H.L., Geng, J.: Intelligent Monitoring of Complex Environments. IEEE Intelligent Systems 25(3), 12–14 (2010)CrossRefGoogle Scholar
  42. 42.
    Mignon, A., Jurie, F.: PCCA: A new approach for distance learning from sparse pairwise constraints. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2666–2672. IEEE (June 2012)Google Scholar
  43. 43.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  44. 44.
    Pedagadi, S., Orwell, J., Velastin, S.: Local fisher discriminant analysis for pedestrian re-identification. In: International Conference on Computer Vision and Pattern Recognition, pp. 3318–3325 (2013)Google Scholar
  45. 45.
    Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: International Conference on Computer Vision and Pattern Recognition, pp. 733–740. IEEE (June 2012)Google Scholar
  46. 46.
    Veeraraghavan, A., Roy-Chowdhury, A.K., Chellappa, R.: Matching shape sequences in video with applications in human movement analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), 1896–1909 (2005)CrossRefGoogle Scholar
  47. 47.
    Vezzani, R., Baltieri, D., Cucchiara, R.: People Re-identification in Surveillance and Forensics: a Survey. ACM Computing Surveys 46(2) (2014)Google Scholar
  48. 48.
    Wang, W., Wang, Y., Huang, Q., Gao, W.: Measuring visual saliency by site entropy rate. In: International Conference on Computer Vision and Pattern Recognition, vol (2), pp. 2368–2375. IEEE (June 2010)Google Scholar
  49. 49.
    Wu, Y., Minoh, M., Mukunoki, M., Li, W., Lao, S.: Collaborative sparse approximation for multiple-shot across-camera person re-identification. In: Advanced Video and Signal-Based Surveillance, pp. 209–214. IEEE (September 2012)Google Scholar
  50. 50.
    Zhang, G., Wang, Y., Kato, J., Marutani, T., Mase, K.: Local distance comparison for multiple-shot people re-identification. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 677–690. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  51. 51.
    Zhao, R., Ouyang, W., Wang, X.: Person re-identification by salience matching. In: International Conference on Computer Vision, pp. 2528–2535. IEEE (December 2013)Google Scholar
  52. 52.
    Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3586–3593. IEEE (June 2013)Google Scholar
  53. 53.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face Recognition: A Literature Survey. ACM Computing Surveys 35(4), 399–458 (2003)CrossRefGoogle Scholar
  54. 54.
    Zheng, W.S., Gong, S., Xiang, T.: Re-identification by Relative Distance Comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(3), 653–668 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Niki Martinel
    • 1
    Email author
  • Christian Micheloni
    • 1
  • Gian Luca Foresti
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly

Personalised recommendations