Advertisement

Person Re-identification by Discriminatively Selecting Parts and Features

  • Amran BhuiyanEmail author
  • Alessandro Perina
  • Vittorio Murino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8927)

Abstract

This paper presents a novel appearance-based method for person re-identification. The core idea is to rank and select different body parts on the basis of the discriminating power of their characteristic features. In our approach, we first segment the pedestrian images into meaningful parts, then we extract features from such parts as well as from the whole body and finally, we perform a salience analysis based on regression coefficients. Given a set of individuals, our method is able to estimate the different importance (or salience) of each body part automatically. To prove the effectiveness of our approach, we considered two standard datasets and we demonstrated through an exhaustive experimental section how our method improves significantly upon existing approaches, especially in multiple-shot scenarios.

Keywords

Pedestrian re-identification STEL segmentation Lasso regression 

References

  1. 1.
    Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: People detection and articulated pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1014–1021 (2009)Google Scholar
  2. 2.
    Jojic, N., Perina, A., Cristani, M., Murino, V., Frey, B.: Stel component analysis: Modeling spatial correlations in image class structure. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2044–2051 (2009)Google Scholar
  3. 3.
    Cheng, D.S., Cristani, M.: Person Re-identification by articulated appearance matching. In: Person Re-Identification. Springer (2014) ISBN 978-1-4471-6295-7Google Scholar
  4. 4.
    Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: British Machine Vision Conference (BMVC) (2011)Google Scholar
  5. 5.
    Bazzani, L., Cristani, M., Murino, V.: Symmetry-driven accumulation of local features for human characterization and re-identification. Computer Vision and Image Understanding 117(2), 130–144 (2013)Google Scholar
  6. 6.
    Salvagnini, P., Bazzani, L., Cristani, M., Murino, V.: Person re-identification with a ptz camera: An introductory study. In: IEEE International Conference on Image Processing (ICIP 2013) (2013)Google Scholar
  7. 7.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  8. 8.
    Schwartz, W., Davis, L.: Learning discriminative appearance-based models using partial least squares. In: SIBGRAPI (2009)Google Scholar
  9. 9.
    Prosser, B., Zheng, W., Gong, S., Xiang, T.: Person re-identification by support vector ranking. In: British Machine Vision Conference, pp. 1–11 (2010)Google Scholar
  10. 10.
    Lin, Z., Davis, L.S.: Learning pairwise dissimilarity profiles for appearance recognition in visual surveillance. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 23–34. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  12. 12.
    Zheng, W., Gong, S., Xiang, T.: Associating groups of people. In: British Machine Vision Conference (2009)Google Scholar
  13. 13.
    Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Person re-identification using haarbased and DCD-based signature. In: Workshop on Activity Monitoring by Multi-Camera Surveillance Systems (2010)Google Scholar
  14. 14.
    Sivic, J., Zitnick, C.L., Szeliski, R.: Finding people in repeated shots of the same scene. In: Proceedings of the British Machine Vision Conference (2006)Google Scholar
  15. 15.
    Satta, R., Fumera, G., Roli, F., Cristani, M., Murino, V.: A multiple component matching framework for person re-identification. In: Maino, G., Foresti, G.L. (eds.) ICIAP 2011, Part II. LNCS, vol. 6979, pp. 140–149. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Bird, N., Masoud, O., Papanikolopoulos, N., Isaacs, A.: Detection of loitering individuals in public transportation areas. IEEE Trans. Intell. Transp. Syst. 6(2), 167–177 (2005)CrossRefGoogle Scholar
  17. 17.
    Gheissari, N., Sebastian, T.B., Tu, P.H., Rittscher, J., Hartley, R.: Person reidentification using spatiotemporal appearance. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 1528–1535 (2006)Google Scholar
  18. 18.
    Wang, X., Doretto, G., Sebastian, T.B., Rittscher, J., Tu, P.H.: Shape and appearance context modeling. In: IEEE Intl. Conf. on Computer Vision (ICCV), pp. 1–8 (2007)Google Scholar
  19. 19.
    Hamdoun, O., Moutarde, F., Stanciulescu, B., Steux, B.: Person re-identification in multicamera system by signature based on interest point descriptors collected on short video sequences. In: ACM/IEEE Intl. Conf. on Distributed Smart Cameras (ICDSC), pp. 1–6 (2008)Google Scholar
  20. 20.
    Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. IEEE Trans. PAMI, 1713–1727 (2008)Google Scholar
  21. 21.
    Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Person re-identification using spatial covariance regions of human body parts. In: AVSS (2010)Google Scholar
  22. 22.
    Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Multiple-shot human reidentification by mean riemannian covariance grid. In: Advanced Video and Signal-Based Surveillance, Klagenfurt, Autriche (2011)Google Scholar
  23. 23.
    TibShirani, R.: Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistics Society. Series B(Methodological) 58(1), 267–288 (1996)Google Scholar
  24. 24.
    Prosser, B., Zheng, W., Gong, S., Xiang, T.: Person re-identification by support vector ranking. In: British Machine Vision Conference, pp. 1–11 (2010)Google Scholar
  25. 25.
    Forssén, P.E.: Maximally stable colour regions for recognition and matching. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2007)Google Scholar
  26. 26.
    Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition and tracking. In: IEEE Intl. Workshop on Performance Evaluation for Tracking and Surveillance (PETS) (2007)Google Scholar
  27. 27.
  28. 28.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Amran Bhuiyan
    • 1
    Email author
  • Alessandro Perina
    • 1
  • Vittorio Murino
    • 1
  1. 1.Pattern Analysis and Computer Vision (PAVIS)Istituto Italiano di TecnologiaGenovaItaly

Personalised recommendations