An Overview of Research Activities in Facial Age Estimation Using the FG-NET Aging Database

  • Gabriel Panis
  • Andreas LanitisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8926)


The FG-NET aging database was released in 2004 in an attempt to support research activities related to facial aging. Since then a number of researchers used the database for carrying out research in various disciplines related to facial aging. Based on the analysis of published work where the FG-NET aging database was used, conclusions related to the type of research carried out in relation to the impact of the dataset in shaping up the research topic of facial aging, are presented. In particular we focus our attention on the topic of age estimation that proved to be the most popular among users of the FG-NET aging database. Through the review of key papers in age estimation and the presentation of benchmark results the main approaches/directions in facial aging are outlined and future trends, requirements and research directions are drafted.


Facial age estimation Aging databases FG-NET aging database 


  1. 1.
    Chang, K.Y., Chen, C.S., Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 585–592. IEEE (2011)Google Scholar
  2. 2.
    Chao, W.L., Liu, J.Z., Ding, J.J.: Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recognition 46(3), 628–641 (2013)CrossRefGoogle Scholar
  3. 3.
    Chen, K., Gong, S., Xiang, T., Loy, C.C.: Cumulative attribute space for age and crowd density estimation. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2467–2474. IEEE (2013)Google Scholar
  4. 4.
    Chen, Y., Hsu, C.: Subspace learning for facial age estimation via pairwise age ranking. IEEE Transactions on Information Forensics and Security 8(12), 2164–2176 (2013)CrossRefGoogle Scholar
  5. 5.
    Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., Kim, J.: Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognition 44(6), 1262–1281 (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cohen, I., Sebe, N., Garg, A., Chen, L.S., Huang, T.S.: Facial expression recognition from video sequences: temporal and static modeling. Computer Vision and Image Understanding 91(1), 160–187 (2003)CrossRefGoogle Scholar
  7. 7.
    Cootes, T.F., Edwards, G.J., Taylor, C.J., et al.: Active appearance models. IEEE Transactions on pattern analysis and machine intelligence 23(6), 681–685 (2001)CrossRefGoogle Scholar
  8. 8.
    El Dib, M.Y., El-Saban, M.: Human age estimation using enhanced bio-inspired features (ebif). In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 1589–1592. IEEE (2010)Google Scholar
  9. 9.
    Fairhurst, M.: Age factors in biometric processing. The Institution of Engineering and Technology (2013)Google Scholar
  10. 10.
    FG-NET (Face and Gesture Recognition Network) (2014). Accessed 10 June 2014
  11. 11.
    Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(11), 1955–1976 (2010)CrossRefGoogle Scholar
  12. 12.
    Geng, X., Yin, C., Zhou, Z.H.: Facial age estimation by learning from label distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(10), 2401–2412 (2013)CrossRefGoogle Scholar
  13. 13.
    Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12), 2234–2240 (2007)CrossRefGoogle Scholar
  14. 14.
    Gnanasivam, P., Muttan, D.S.: Estimation of age through fingerprints using wavelet transform and singular value decomposition. International Journal of Biometrics and Bioinformatics (IJBB) 6(2), 58 (2012)Google Scholar
  15. 15.
    Günay, A., Nabiyev, V.V.: Age estimation based on local radon features of facial images. In: Computer and Information Sciences III, pp. 183–190. Springer (2013)Google Scholar
  16. 16.
    Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Transactions on Image Processing 17(7), 1178–1188 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: A probabilistic fusion approach to human age prediction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. CVPRW 2008, pp. 1–6. IEEE (2008)Google Scholar
  18. 18.
    Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired features. In: IEEE Conference on Computer Vision and Pattern Recognition CVPR 2009, pp. 112–119. IEEE (2009)Google Scholar
  19. 19.
    Han, H., Otto, C., Jain, A.K.: Age estimation from face images: Human vs. machine performance. In: 2013 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2013)Google Scholar
  20. 20.
    Hong, L., Wen, D., Fang, C., Ding, X.: A new biologically inspired active appearance model for face age estimation by using local ordinal ranking. In: Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service, pp. 327–330. ACM (2013)Google Scholar
  21. 21.
    Kilinc, M., Akgul, Y.S.: Automatic human age estimation using overlapped age groups. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J. (eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 313–325. Springer, Heidelberg (2013) Google Scholar
  22. 22.
    Kwon, Y.H., da Vitoria Lobo, N.: Age classification from facial images. In: 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Proceedings CVPR 1994, pp. 762–767. IEEE (1994)Google Scholar
  23. 23.
    Lanitis, A.: Comparative evaluation of automatic age-progression methodologies. EURASIP Journal on Advances in Signal Processing 2008 (2008)Google Scholar
  24. 24.
    Lanitis, A.: Age estimation based on head movements: A feasibility study. In: 2010 4th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 1–6. IEEE (2010)Google Scholar
  25. 25.
    Lanitis, A.: A survey of the effects of aging on biometric identity verification. International Journal of Biometrics 2(1), 34–52 (2010)CrossRefGoogle Scholar
  26. 26.
    Lanitis, A., Draganova, C., Christodoulou, C.: Comparing different classifiers for automatic age estimation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(1), 621–628 (2004)CrossRefGoogle Scholar
  27. 27.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 442–455 (2002)CrossRefGoogle Scholar
  28. 28.
    Li, C., Liu, Q., Liu, J., Lu, H.: Learning ordinal discriminative features for age estimation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2570–2577. IEEE (2012)Google Scholar
  29. 29.
    Liang, Y., Wang, X., Zhang, L., Wang, Z.: A hierarchical framework for facial age estimation. Mathematical Problems in Engineering 2014 (2014)Google Scholar
  30. 30.
    Lu, J., Tan, Y.P.: Gait-based human age estimation. IEEE Transactions on Information Forensics and Security 5(4), 761–770 (2010)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Luu, K., Ricanek, K., Bui, T.D., Suen, C.Y.: Age estimation using active appearance models and support vector machine regression. In: IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, 2009. BTAS 2009, pp. 1–5. IEEE (2009)Google Scholar
  32. 32.
    Ngan, M., Grotherh, P.: Face recognition vendor test (frvt) - performance of automated age estimation algorithms. NIST Interagency Report 7995 (2014)Google Scholar
  33. 33.
    Ni, B., Song, Z., Yan, S.: Web image mining towards universal age estimator. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 85–94. ACM (2009)Google Scholar
  34. 34.
    O’Toole, A.J., Price, T., Vetter, T., Bartlett, J., Blanz, V.: 3d shape and 2d surface textures of human faces: the role of averages in attractiveness and age. Image and Vision Computing 18(1), 9–19 (1999)CrossRefGoogle Scholar
  35. 35.
    Ramanathan, N., Chellappa, R., Biswas, S.: Computational methods for modeling facial aging: A survey. Journal of Visual Languages & Computing 20(3), 131–144 (2009)CrossRefGoogle Scholar
  36. 36.
    Ricanek, K., Tesafaye, T.: Morph: A longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition, 2006. FGR 2006, pp. 341–345. IEEE (2006)Google Scholar
  37. 37.
    Rowland, D.A., Perrett, D.I.: Manipulating facial appearance through shape and color. IEEE Computer Graphics and Applications 15(5), 70–76 (1995)CrossRefGoogle Scholar
  38. 38.
    Suo, J., Wu, T., Zhu, S., Shan, S., Chen, X., Gao, W.: Design sparse features for age estimation using hierarchical face model. In: 8th IEEE International Conference on Automatic Face & Gesture Recognition, 2008. FG 2008, pp. 1–6. IEEE (2008)Google Scholar
  39. 39.
    Thukral, P., Mitra, K., Chellappa, R.: A hierarchical approach for human age estimation. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1529–1532. IEEE (2012)Google Scholar
  40. 40.
    Wang, S., Xia, X., Qing, Z., Wang, H., Le, J.: Aging face identification using biologically inspired features. In: 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC), pp. 1–5. IEEE (2013)Google Scholar
  41. 41.
    Wu, T., Chellappa, R.: Age invariant face verification with relative craniofacial growth model. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 58–71. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  42. 42.
    Xiao, B., Yang, X., Xu, Y., Zha, H.: Learning distance metric for regression by semidefinite programming with application to human age estimation. In: Proceedings of the 17th ACM international conference on Multimedia, pp. 451–460. ACM (2009)Google Scholar
  43. 43.
    Yan, S., Wang, H., Fu, Y., Yan, J., Tang, X., Huang, T.S.: Synchronized submanifold embedding for person-independent pose estimation and beyond. IEEE Transactions on Image Processing 18(1), 202–210 (2009)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Yan, S., Wang, H., Huang, T.S., Yang, Q., Tang, X.: Ranking with uncertain labels. In: 2007 IEEE International Conference on Multimedia and Expo, pp. 96–99. IEEE (2007)Google Scholar
  45. 45.
    Yan, S., Wang, H., Tang, X., Huang, T.S.: Learning auto-structured regressor from uncertain nonnegative labels. In: IEEE 11th International Conference on Computer Vision. ICCV 2007, pp. 1–8. IEEE (2007)Google Scholar
  46. 46.
    Yan, S., Zhou, X., Liu, M., Hasegawa-Johnson, M., Huang, T.S.: Regression from patch-kernel. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  47. 47.
    Yin, C., Geng, X.: Facial age estimation by conditional probability neural network. In: Liu, C.-L., Zhang, C., Wang, L. (eds.) CCPR 2012. CCIS, vol. 321, pp. 243–250. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  48. 48.
    Ylioinas, J., Hadid, A., Hong, X., Pietikäinen, M.: Age estimation using local binary pattern kernel density estimate. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 141–150. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  49. 49.
    Zhang, L., Wang, X., Liang, Y., Xie, L.: A new method for age estimation from facial images by hierarchical model. In: Proceedings of the Second International Conference on Innovative Computing and Cloud Computing, p. 88. ACM (2013)Google Scholar
  50. 50.
    Zheng, Y., Yao, H., Zhang, Y., Xu, P.: Age classification based on back-propagation network. In: Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service, pp. 319–322. ACM (2013)Google Scholar
  51. 51.
    Zhou, H., Miller, P., Zhang, J.: Age classification using radon transform and entropy based scaling svm. In: BMVC, pp. 1–12 (2011)Google Scholar
  52. 52.
    Zhou, S.K., Georgescu, B., Zhou, X.S., Comaniciu, D.: Image based regression using boosting method. In: Tenth IEEE International Conference on Computer Vision. ICCV 2005. vol. 1, pp. 541–548. IEEE (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Visual Media Computing Lab, Department of Multimedia and Graphic ArtsCyprus University of TechnologyLimassolCyprus

Personalised recommendations