Exploring the Magnitude of Human Sexual Dimorphism in 3D Face Gender Classification

  • Baiqiang XiaEmail author
  • Boulbaba Ben Amor
  • Mohamed Daoudi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8926)


Human faces demonstrate clear Sexual Dimorphism (SD) for recognizing the gender. Different faces, even of the same gender, convey different magnitude of sexual dimorphism. However, in gender classification, gender has been interpreted discretely as either male or female. The exact magnitude of the sexual dimorphism in each gender is ignored. In this paper, we propose to evaluate the SD magnitude, using the ratio of votes from the Random Forest algorithm performed on 3D geometric features related to the face morphology. Then, faces are separated into a Low-SD group and a High-SD group. In the Intra-group experiments, when the training is performed with scans of similar SD magnitude than the testing scan, the classification accuracy improves. In Inter-group experiments, the scans with low magnitude of SD demonstrate higher gender discrimination power than the ones with high SD magnitude. With a decision-level fusion method, our method achieves 97.46 % gender classification rate on the 466 earliest 3D scans of FRGCv2 (mainly neutral), and 97.18 % on the whole FRGCv2 dataset (with expressions).


3D face Gender classification Sexual dimorphism Random forest 


  1. 1.
    Hall, M.A.: Correlation-based feature subset selection for machine learning. Ph.D thesis, Department of Computer Science, University of Waikato (1999)Google Scholar
  2. 2.
    Ballihi, L., Ben Amor, B., Daoudi, M., Srivastava, A., Aboutajdine, D.: Boosting 3D-geometric features for efficient face recognition and gender classification. IEEE Transactions on Information Forensics and Security 7, 1766–1779 (2012)CrossRefGoogle Scholar
  3. 3.
    Baudouin, J.Y., Gallay, M.: Is face distinctiveness gender based? Journal of Experimental Psychology: Human Perception and Performance 32(4), 789 (2006)Google Scholar
  4. 4.
    Ben Amor, B., Drira, H., Berretti, S., Daoudi, M., Srivastava, A.: 4d facial expression recognition by learning geometric deformations. IEEE Transactions on Cybernetics, February 2014Google Scholar
  5. 5.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bruce, V., Burton, A.M., Hanna, E., Healey, P., Mason, O., Coombes, A., Fright, R., Linney, A.: Sex discrimination: How do we tell the difference between male and female faces? Perception. 22(2), 131–152 (1993)CrossRefGoogle Scholar
  7. 7.
    Drira, H., Ben Amor, B., Srivastava, A., Daoudi, M., Slama, R.: 3d face recognition under expressions, occlusions, and pose variations. IEEE Transactions on Pattern Analysis and Machine Intelligence. 35, 2270–2283 (2013)CrossRefGoogle Scholar
  8. 8.
    Drira, H., Ben Amor, B., Daoudi, M., Srivastava, A., Berretti, S.: 3d dynamic expression recognition based on a novel deformation vector field and random forest. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1104–1107. IEEE (2012)Google Scholar
  9. 9.
    Du, L., Zhuang, Z., Guan, H., Xing, J., Tang, X., Wang, L., Wang, Z., Wang, H., Liu, Y., Su, W., et al.: Head-and-face anthropometric survey of chinese workers. Annals of occupational hygiene 52(8), 773–782 (2008)CrossRefGoogle Scholar
  10. 10.
    Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 2234–2240 (2007)CrossRefGoogle Scholar
  11. 11.
    Gilani, S.Z., Shafait, F., Ajmal, M.: Biologically significant facial landmarks: how significant are they for gender classification?. In: DICTA, pp. 1–8 (2013)Google Scholar
  12. 12.
    Guillaume, V., Harold, H., Eric, V.B.: Linking the structure and perception of 3d faces: gender, ethnicity, and expressive posture. In: International Conference on Audio-Visual Speech Processing (AVSP) (2003)Google Scholar
  13. 13.
    Han, X., Ugail, H., Palmer, I.: Gender classification based on 3D face geometry features using svm. In: CyberWorlds, pp. 114–118 (2009)Google Scholar
  14. 14.
    Hill, H., Bruce, V., Akamatsu, S.: Perceiving the sex and race of faces: the role of shape and colour. Proceedings of the Royal Society of London Series B Biological Sciences 261(1362), 367–373 (1995)CrossRefGoogle Scholar
  15. 15.
    Hu, Y., Yan, J., Shi, P.: A fusion-based method for 3D facial gender classification. Computer and Automation Engineering (ICCAE) 5, 369–372 (2010)Google Scholar
  16. 16.
    Hu, Y., Fu, Y., Tariq, U., Huang, T.S.: Subjective experiments on gender and ethnicity recognition from different face representations. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, Y.-P.P. (eds.) MMM 2010. LNCS, vol. 5916, pp. 66–75. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Huang, D., Ding, H., Wang, C., Wang, Y., Zhang, G., Chen, L.: Local circular patterns for multi-modal facial gender and ethnicity classification. Image and Vision Computing (0) (2014)Google Scholar
  18. 18.
    Hunter, W.S., Garn, S.M.: Disproportionate sexual dimorphism in the human face. American Journal of Physical Anthropology 36(1), 133–138 (1972)CrossRefGoogle Scholar
  19. 19.
    Huynh, T., Min, R., Dugelay, J.: An efficient lbp-based descriptor for facial depth images applied to gender recognition using rgb-d face data. In: ACCV 2012, Workshop on Computer Vision with Local Binary Pattern Variants (2012)Google Scholar
  20. 20.
    Jones, B.C., DeBruine, L.M., Little, A.C.: The role of symmetry in attraction to average faces. Perception & Psychophysics 69(8), 1273–1277 (2007)CrossRefGoogle Scholar
  21. 21.
    Kohavi, R.: Wrappers for performance enhancement and oblivious decision graphs. Ph.D thesis, Stanford University (1995)Google Scholar
  22. 22.
    Komori, M., Kawamura, S., Ishihara, S.: Effect of averageness and sexual dimorphism on the judgment of facial attractiveness. Vision Research 49(8), 862–869 (2009)CrossRefGoogle Scholar
  23. 23.
    Little, A., Jones, B., Waitt, C., Tiddeman, B., Feinberg, D., Perrett, D., Apicella, C., Marlowe, F.: Symmetry is related to sexual dimorphism in faces: data across culture and species. PLoS One 3(5), e2106 (2008)CrossRefGoogle Scholar
  24. 24.
    Little, A.C., Jones, B.C., DeBruine, L.M., Feinberg, D.R.: Symmetry and sexual dimorphism in human faces: interrelated preferences suggest both signal quality. Behavioral Ecology 19(4), 902–908 (2008)CrossRefGoogle Scholar
  25. 25.
    Liu, Y., Palmer, J.: A quantified study of facial asymmetry in 3D faces. In: Analysis and Modeling of Faces and Gestures, pp. 222–229 (2003)Google Scholar
  26. 26.
    Lu, X., Chen, H., Jain, A.K.: Multimodal facial gender and ethnicity identification. In: International Conference on Advances in Biometrics, pp. 554–561 (2006)Google Scholar
  27. 27.
    Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. Computer Vision and Pattern Recognition 1, 947–954 (2005)Google Scholar
  28. 28.
    Rhodes, G., Zebrowitz, L.A., Clark, A., Kalick, S.M., Hightower, A., McKay, R.: Do facial averageness and symmetry signal health? Evolution and Human Behavior 22(1), 31–46 (2001)CrossRefGoogle Scholar
  29. 29.
    Shuler, J.T.: Facial sexual dimorphism and judgments of personality: a literature review. Issues 6(1) (2012)Google Scholar
  30. 30.
    Smith, F.G., Jones, B.C., DeBruine, L.M., Little, A.C.: Interactions between masculinity-femininity and apparent health in face preferences. Behavioral Ecology 20(2), 441–445 (2009)CrossRefGoogle Scholar
  31. 31.
    Srivastava, A., Klassen, E., Joshi, S., Jermyn, I.: Shape analysis of elastic curves in euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 1415–1428 (2011)CrossRefGoogle Scholar
  32. 32.
    Steven, W., Randy, T.: Facial masculinity and fluctuating asymmetry. Evolution and Human Behavior 24(4), 231–241 (2003)CrossRefGoogle Scholar
  33. 33.
    Toderici, G., O’Malley, S., Passalis, G., Theoharis, T., Kakadiaris, I.: Ethnicity- and gender-based subject retrieval using 3-D face-recognition techniques. International Journal of Computer Vision 89, 382–391 (2010)CrossRefGoogle Scholar
  34. 34.
    Wang, X., Kambhamettu, C.: Gender classification of depth images based on shape and texture analysis. In: Global Conference on Signal and Information Processing (GlobalSIP), pp. 1077–1080. IEEE (2013)Google Scholar
  35. 35.
    Wu, J., Smith, W., Hancock, E.: Gender classification using shape from shading. In: International Conference on Image Analysis and Recognition, pp. 499–508 (2007)Google Scholar
  36. 36.
  37. 37.
    Xia, B., Ben Amor, B., Drira, H., Daoudi, M., Ballihi, L.: Gender and 3D facial symmetry: what’s the relationship?. In: IEEE Conference on Automatic Face and Gesture Recognition (2013)Google Scholar
  38. 38.
    Xia, B., Ben Amor, B., Huang, D., Daoudi, M., Wang, Y., Drira, H.: Enhancing gender classification by combining 3d and 2d face modalities. In: European Signal Processing Conference (EUSIPCO) (2013)Google Scholar
  39. 39.
    Young, J.: Head and face anthropometry of adult us civilians (1993)Google Scholar
  40. 40.
    Zhuang, Z., Bradtmiller, B.: Head and face anthropometric survey of us respirator users. Journal of Occupational and Environmental Hygiene 2(11), 567–576 (2005)CrossRefGoogle Scholar
  41. 41.
    Zhuang, Z., Landsittel, D., Benson, S., Roberge, R., Shaffer, R.: Facial anthropometric differences among gender, ethnicity, and age groups 54(4), 391–402 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Baiqiang Xia
    • 2
    • 3
    Email author
  • Boulbaba Ben Amor
    • 1
    • 3
  • Mohamed Daoudi
    • 1
    • 3
  1. 1.Institut Mines-Télécom/Télécom LilleLilleFrance
  2. 2.University of Lille1Villeneuve-d’ascqFrance
  3. 3.CRIStAL (UMR CNRS 9189)LilleFrance

Personalised recommendations