Advertisement

\(\mathcal {ALC({\mathbf {F}}})\): A New Description Logic for Spatial Reasoning in Images

  • Céline HudelotEmail author
  • Jamal Atif
  • Isabelle Bloch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8926)

Abstract

In image interpretation and computer vision, spatial relations between objects and spatial reasoning are of prime importance for recognition and interpretation tasks. Quantitative representations of spatial knowledge have been proposed in the literature. In the Artificial Intelligence community, logical formalisms such as ontologies have also been proposed for spatial knowledge representation and reasoning, and a challenging and open problem consists in bridging the gap between these ontological representations and the quantitative ones used in image interpretation. In this paper, we propose a new description logic, named \(\mathcal {ALC({\mathbf {F}})}\), dedicated to spatial reasoning for image understanding. Our logic relies on the family of description logics equipped with concrete domains, a widely accepted way to integrate quantitative and qualitative qualities of real world objects in the conceptual domain, in which we have integrated mathematical morphological operators as predicates. Merging description logics with mathematical morphology enables us to provide new mechanisms to derive useful concrete representations of spatial concepts and new qualitative and quantitative spatial reasoning tools. It also enables imprecision and uncertainty of spatial knowledge to be taken into account through the fuzzy representation of spatial relations. We illustrate the benefits of our formalism on a model-guided cerebral image interpretation task.

Keywords

Spatial reasoning Ontology-based image understanding Description logics 

References

  1. 1.
    Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logic. Springer (2007)Google Scholar
  2. 2.
    Aksoy, S., Tusk, C., Koperski, K., Marchisio, G.: Scene modeling and image mining with a visual grammar. In: Chen, C. (ed.) Frontiers of Remote Sensing Information Processing, pp. 35–62. World Scientific (2003)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)Google Scholar
  4. 4.
    Baader, F., Sattler, U.: Tableau algorithms for description logics. Studia Logica 69, 2001 (2000)MathSciNetGoogle Scholar
  5. 5.
    Bar, M.: Visual objects in context. Nature Reviews Neuroscience 5(8), 617–629 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Biederman, I.: Perceiving Real-World Scenes. Science 177, 77–80 (1972)CrossRefGoogle Scholar
  7. 7.
    Bloch, I.: Fuzzy Relative Position between Objects in Image Processing: a Morphological Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(7), 657–664 (1999)CrossRefGoogle Scholar
  8. 8.
    Bloch, I.: On Fuzzy Distances and their Use in Image Processing under Imprecision. Pattern Recognition 32(11), 1873–1895 (1999)CrossRefGoogle Scholar
  9. 9.
    Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A Review. Image and Vision Computing 23(2), 89–110 (2005)CrossRefGoogle Scholar
  10. 10.
    Bloch, I.: Spatial Reasoning under Imprecision using Fuzzy Set Theory, Formal Logics and Mathematical Morphology. International Journal of Approximate Reasoning 41, 77–95 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Bloch, I.: Duality vs. Adjunction for Fuzzy Mathematical Morphology and General Form of Fuzzy Erosions and Dilations. Fuzzy Sets and Systems 160, 1858–1867 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Bloch, I., Maître, H.: Fuzzy Mathematical Morphologies: A Comparative Study. Pattern Recognition 28(9), 1341–1387 (1995)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1–2), 1–29 (2001)Google Scholar
  14. 14.
    Colliot, O., Camara, O., Bloch, I.: Integration of Fuzzy Spatial Relations in Deformable Models - Application to Brain MRI Segmentation. Pattern Recognition 39, 1401–1414 (2006)CrossRefGoogle Scholar
  15. 15.
    Freksa, C.: Spatial cognition: An AI perspective. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI, pp. 1122–1128. IOS Press (2004)Google Scholar
  16. 16.
    Haarslev, V., Lutz, C., Moller, R.: Foundations of spatioterminological reasoning with description logics. In: Sixth International Conference on Principles of Knowledge Representation and Reasoning, pp. 112–123. Trento, Italy (1998)Google Scholar
  17. 17.
    Haarslev, V., Lutz, C., Moller, R.: A description logic with concrete domains and a role-forming predicate operator. Journal of Logic and Computation 9(3), 351–384 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hernández-Gracidas, C., Sucar, L., Montes-y Gómez, M.: Improving image retrieval by using spatial relations. Multimedia Tools Appl. 62(2), 479–505 (2013)CrossRefGoogle Scholar
  19. 19.
    Hudelot, C., Atif, J., Bloch, I.: Fuzzy Spatial Relation Ontology for Image Interpretation. Fuzzy Sets and Systems 159, 1929–1951 (2008)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Hudelot, C., Atif, J., Bloch, I.: A spatial relation ontology using mathematical morphology and description logics for spatial reasoning. In: ECAI-08 Workshop on Spatial and Temporal Reasoning, pp. 21–25. Patras, Greece, July 2008Google Scholar
  21. 21.
    Hudelot, C., Atif, J., Bloch, I.: Integrating bipolar fuzzy mathematical morphology in description logics for spatial reasoning. In: European Conference on Artificial Intelligence ECAI 2010, pp. 497–502. Lisbon, Portugal, August 2010Google Scholar
  22. 22.
    Inglada, J., Michel, J.: Qualitative Spatial Reasoning for High-Resolution Remote Sensing Image Analysis. IEEE Transactions on Geoscience and Remote Sensing 47(2), 599–612 (2009)CrossRefGoogle Scholar
  23. 23.
    Keller, J.M., Wang, X.: Comparison of spatial relation definitions in computer vision. In: 3rd International Symposium on Uncertainty Modelling and Analysis (ISUMA 1995), p. 679. IEEE Computer Society, Washington, DC (1995)Google Scholar
  24. 24.
    Kuipers, B.J., Levitt, T.S.: Navigation and Mapping in Large-Scale Space. AI Magazine 9(2), 25–43 (1988)Google Scholar
  25. 25.
    Küsters, R.: Non-standard inferences in description logics. Springer-Verlag New York Inc., New York (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Le Ber, F., Napoli, A.: The design of an object-based system for representing and classifying spatial structures and relations. Journal of Universal Computer Science 8(8), 751–773 (2002)Google Scholar
  27. 27.
    Lutz, C.: Description logics with concrete domains: a survey. Advances in Modal Logics 4, 265–296 (2003)MathSciNetGoogle Scholar
  28. 28.
    Matsakis, P., Wendling, L.: A new way to represent the relative position between areal objects. IEEE Transactions on Pattern Analalysis and Machine Intelligence 21(7), 634–643 (1999)CrossRefGoogle Scholar
  29. 29.
    Millet, C., Bloch, I., Hède, P., Moëllic, P.: Using relative spatial relationships to improve individual region recognition. In: 2nd European Workshop on the Integration of Knowledge, Semantic and Digital Media Technologies, pp. 119–126 (2005)Google Scholar
  30. 30.
    Miyajima, K., Ralescu, A.: Spatial organization in 2D segmented images: Representation and recognition of primitive spatial relations. Fuzzy Sets and Systems 65(2–3), 225–236 (1994)CrossRefGoogle Scholar
  31. 31.
    Randell, D., Cui, Z., Cohn, A.: A Spatial Logic based on Regions and Connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning KR’92, pp. 165–176. Kaufmann, San Mateo (1992)Google Scholar
  32. 32.
    Rosse, C., Mejino, J.L.V.: A Reference Ontology for Bioinformatics: The Foundational Model of Anatomy. Journal of Biomedical Informatics 36, 478–500 (2003)CrossRefGoogle Scholar
  33. 33.
    Scherrer, B., Dojat, M., Forbes, F., Garbay, C.: MRF Agent Based Segmentation: Application to MRI Brain Scans. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS (LNAI), vol. 4594, pp. 13–23. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  34. 34.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1982)zbMATHGoogle Scholar
  35. 35.
    Vanegas, M.C., Bloch, I., Inglada, J.: Detection of aligned objects for high resolution image understanding. In: IEEE IGARSS 2010. Honolulu, Hawai, USA, July 2010Google Scholar
  36. 36.
    Vieu, L.: Spatial Representation and Reasoning in Artificial Intelligence. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 5–41. Kluwer (1997)Google Scholar
  37. 37.
    Waxman, S.G.: Correlative Neuroanatomy, 24th edn. McGraw-Hill, New York (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centrale SupelecParisFrance
  2. 2.PSL, LAMSADEUniversité Paris DauphineParisFrance
  3. 3.Institut Mines Télécom - Télécom ParisTech - CNRS LTCIParisFrance

Personalised recommendations