Improving Ancient Roman Coin Recognition with Alignment and Spatial Encoding

  • Jongpil KimEmail author
  • Vladimir Pavlovic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8925)


Roman coins play an important role to understand the Roman empire because they convey rich information about key historical events of the time. Moreover, as large amounts of coins are daily traded over the Internet, it becomes necessary to develop automatic coin recognition systems to prevent illegal trades. In this paper, we describe a new large annotated database of over 2800 Roman coin images and propose an effective automated system for recognition of coins that leverages this new coin image set. As the use of succinct spatial-appearance relationships is critical for accurate coin recognition, we suggest two competing methods, adapted for the coin domain, to accomplish this task.


Recognition Detection Coin recognition 


  1. 1.
    Arandjelović, O.: Automatic attribution of ancient Roman imperial coins. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)Google Scholar
  2. 2.
    Arandjelović, O.: Reading ancient coins: automatically identifying denarii using obverse legend seeded retrieval. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 317–330. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Cohen, H.: Description historique des monnaies frappées sous l’empire romain, vol. I-VIII, 2 edn. Paris, France (1880–1892)Google Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)Google Scholar
  5. 5.
    Dimitrovski, I., Kocev, D., Loskovska, S., Deroski, S.: Hierarchical annotation of medical images. Pattern Recognition 44, 2436–2449 (2011)CrossRefGoogle Scholar
  6. 6.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)Google Scholar
  7. 7.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1627–1645 (2010)CrossRefGoogle Scholar
  8. 8.
    Gavves, E., Fernando, B., Snoek, C.G.M., Smeulders, A.W.M., Tuytelaars, T.: Fine-grained categorization by alignments. In: International Conference on Computer Vision (ICCV) (2013)Google Scholar
  9. 9.
    Huber, R., Ramoser, H., Mayer, K., Penz, H., Rubik, M.: Classification of coins using an eigenspace approach. Pattern Recognition Letters (PATREC) 26, 61–75 (2005)CrossRefGoogle Scholar
  10. 10.
    Kampel, M., Zaharieva, M.: Recognizing ancient coins based on local features. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 11–22. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Kavelar, A., Zambanini, S., Kampel, M.: Word detection applied to images of ancient Roman coins. In: International Conference on Virtual Systems and Multimedia (VSMM), pp. 577–580, September 2012Google Scholar
  12. 12.
    Krapac, J., Verbeek, J., Jurie, F.: Modeling Spatial Layout with Fisher Vectors for Image Categorization. International Journal of Computer Vision (IJCV) (2011)Google Scholar
  13. 13.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2006)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV) 60, 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    van der Maaten, L.J.P., Boon, P.J.: Coin-o-matic: a fast system for reliable coin classification. In: MUSCLE CIS Coin Competition Workshop (2006)Google Scholar
  16. 16.
    Nölle, M., Penz, H., Rubik, M., Mayer, K., Hollaender, I., Granec, R.: Dagobert - a new coin recognition and sorting system. In: Conference on Digital Image Computing: Techniques and Applications (DICTA) (2003)Google Scholar
  17. 17.
    Piater, J., Rodríguez-Sánchez, A.: A Bag of Visual Words Approach for Symbols-Based Coarse-Grained Ancient Coin Classification. CoRR abs/1304.6, 1–8 (2013)Google Scholar
  18. 18.
    Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image Classification with the Fisher Vector: Theory and Practice. International Journal of Computer Vision (IJCV) 105, 222–245 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Subspace learning from image gradient orientations. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 34, 2454–2466 (2012)CrossRefGoogle Scholar
  20. 20.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008).
  21. 21.
    Zaharieva, M., Kampel, M., Zambanini, S.: Image based recognition of ancient coins. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 547–554. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  22. 22.
    Zambanini, S., Kampel, M.: Coarse-to-fine correspondence search for classifying ancient coins. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part II. LNCS, vol. 7729, pp. 25–36. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceRutgers UniversityPiscatawayUSA

Personalised recommendations